Skip to main content
Log in

Making structured metals transparent for broadband electromagnetic waves

  • Special Focus
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves by surface plasmons (SPs) or spoof surface plasmons (SSPs). First, we demonstrate that the interference between the localized and propagating SPs plays an important role in the optical transmission through arrays of sub-wavelength holes. The observed phenomena belong to the category of plasmonic Fano effects. Second, we show that the transmission enhancement originates not only from the coupling between the incident light and the excited SPs but also from the coupling among these SPs in multiple nano-aperture stacks. Finally, we demonstrate that metallic plates with narrow slit arrays can become transparent within extremely broad spectral bandwidths, and high transmission efficiency is insensitive to the thickness of the metal. This phenomenon explicitly demonstrates the conversion between light and SPs. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824–830

    Article  Google Scholar 

  2. Pendry J B, Martín-Moreno L, García-Vidal F J. Mimicking surface plasmons with structured surfaces. Science, 2004, 305: 847–848

    Article  Google Scholar 

  3. Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391: 667–669

    Article  Google Scholar 

  4. Porto J A, García-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett, 1999, 83: 2845–2848

    Article  Google Scholar 

  5. Liu H, Lalanne P. Microscopic theory of the extraordinary optical transmission. Nature, 2008, 452: 728–731

    Article  Google Scholar 

  6. Huang X R, Peng R W, Fan R H. Making metals transparent for white light by spoof surface plasmons. Phys Rev Lett, 2010, 105: 243901

    Article  Google Scholar 

  7. Fan R H, Peng R W, Huang X R, et al. Transparent metals for ultrabroadband electromagnetic waves. Adv Mater, 2012, 24: 1980–1986

    Article  Google Scholar 

  8. Alù A, D’Aguanno G, Mattiucci N, et al. Plasmonic brewster angle: broadband extraordinary transmission through optical gratings. Phys Rev Lett, 2011, 106: 123902

    Article  Google Scholar 

  9. Subramania G, Foteinopoulou S, Brener I. Nonresonant broadband funneling of light via ultrasubwavelength channels. Phys Rev Lett, 2011, 107: 163902

    Article  Google Scholar 

  10. Hooper I R, Preist T W, Sambles J R. Making tunnel barriers (including metals) transparent. Phys Rev Lett, 2006, 97: 053902

    Article  Google Scholar 

  11. Bao Y J, Peng R W, Shu D J, et al. Role of interference between localized and propagating surfacewaves on the extraordinary optical transmission through a subwavelength-aperture array. Phys Rev Lett, 2008, 101: 087401

    Article  Google Scholar 

  12. Xu H X, Bjerneld E J, Käll M, et al. Spectroscopy of single Hemoglobin molecules by surface enhanced raman scattering. Phys Rev Lett, 1999, 83: 4357–4360

    Article  Google Scholar 

  13. Xu H X, Wang X H, Persson M P, et al. Unified treatment of fluorescence and Raman scattering processes near metal surfaces. Phys Rev Lett, 2004, 93: 243002

    Article  Google Scholar 

  14. Liu Y M, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev, 2011, 40: 2494–2507

    Article  Google Scholar 

  15. Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966–3969

    Article  Google Scholar 

  16. Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nat Mat, 2008, 7: 435–441

    Article  Google Scholar 

  17. Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292: 77–79

    Article  Google Scholar 

  18. Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455: 376–379

    Article  Google Scholar 

  19. Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech, 1999, 47: 2075–2084

    Article  Google Scholar 

  20. Yen T J, Padilla W J, Fang N, et al. Terahertz magnetic response from artificial materials. Science, 2004, 303: 1494–1496

    Article  Google Scholar 

  21. Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306: 1351–1353

    Article  Google Scholar 

  22. Xiong X, Sun W H, Bao Y J, et al. Switching the electric and magnetic responses in a metamaterial. Phys Rev B, 2009, 80: 201105(R)

    Article  Google Scholar 

  23. Shen J T, Catrysse P B, Fan S. Mechanism for designing metallic metamaterials with a high index of refraction. Phys Rev Lett, 2005, 94: 197401

    Article  Google Scholar 

  24. Choi M, Lee S H, Kim Y, et al. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470: 369–373

    Article  Google Scholar 

  25. Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun, 2010, 1: 21

    Google Scholar 

  27. Zhao J Z, Wang D L, Peng R W, et al. Watching outside while under a carpet cloak of invisibility. Phys Rev E, 2011, 84: 046607

    Article  Google Scholar 

  28. Zhang S, Park Y S, Li J. Negative refractive index in chiral metamaterials. Phys Rev Lett, 2009, 102: 023901

    Article  Google Scholar 

  29. Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett, 2007, 99: 063908

    Article  Google Scholar 

  30. Zhang S, Wei H, Bao K, et al. Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett, 2011, 107: 096801

    Article  Google Scholar 

  31. Xiong X, Sun W H, Bao Y J. Construction of a chiral metamaterial with a U-shaped resonator assembly. Phys Rev B, 2010, 81: 075119

    Article  Google Scholar 

  32. Bao Y J, Zhang B, Wu Z, et al. Surface-plasmon-enhanced transmission through metallic film perforated with fractalfeatured aperture array. Appl Phys Lett, 2007, 90: 251914

    Article  Google Scholar 

  33. Bao Y J, Li H M, Chen X C, et al. Tailoring the resonances of surface plasmas on fractal-featured metal film by adjusting aperture configuration. Appl Phys Lett, 2008, 92: 151902

    Article  Google Scholar 

  34. Tang Z H, Peng R W, Wang Z, et al. Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays. Phys Rev B, 2007, 76: 195405

    Article  Google Scholar 

  35. Gao F, Li D, Peng R W, et al. Tunable interference of light behind subwavelength apertures. Appl Phys Lett, 2009, 95: 011104

    Article  Google Scholar 

  36. Qi D X, Fan R H, Peng R W, et al. Multiple-band transmission of acoustic wave through metallic gratings. Appl Phys Lett, 2012, 101: 061912

    Article  Google Scholar 

  37. Zhou L, Wen W J, Chan C T, et al. Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields. Phys Rev Lett, 2005, 94: 243905

    Article  Google Scholar 

  38. Song Z Y, He Q, Xiao S Y, et al. Making a continuous metal film transparent via scattering cancellations. Appl Phys Lett, 2012, 101: 181110

    Article  Google Scholar 

  39. Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials. Phys Rev Lett, 2008, 101: 047401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RuWen Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, C., Peng, R., Fan, R. et al. Making structured metals transparent for broadband electromagnetic waves. Sci. China Inf. Sci. 56, 1–9 (2013). https://doi.org/10.1007/s11432-013-5037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5037-9

Keywords

Navigation