Skip to main content
Log in

A brief of recent research progress on ionospheric disturbances

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Ionospheric disturbances are the main causes of space weather events, which seriously influence accurate navigation, telecommunication, and so on. It is a fundamental issue to detect and analyze the disturbance processes of the ionosphere. Theoretically, the understanding of the mechanisms of most ionospheric disturbances depends on observational results. With the development of space observation techniques and related equipments, various efforts have been made to analyze the long-term statistical variations as well as sudden disturbances of ionospheric observation results. We briefly report some research progresses of ionospheric disturbances achieved in recent years, with regard to ground-based and satellites observations. The purpose is to provide a reference about the latest research progresses and improve the development of the future ionospheric disturbances observations and related researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budden K G. Radio Waves in the Ionosphere. Cambridge: Cambridge University Press, 2009. 5

    Google Scholar 

  2. Reinisch B W, Galkin I A, Khmyrov G M, et al. New digisonde for research and monitoring applications. Radio Sci, 2009, 44: RS0A24

    Article  Google Scholar 

  3. Hao Y Q, Zhang D H. Ionospheric absorption and planetary wave activity in East Asia sector. Sci China Tech Sci, 2012, 55: 1264–1272

    Article  Google Scholar 

  4. Lynn K J M. Oblique sounding in Australia. http://ips.gov.au/IPSHosted/, 2008

    Google Scholar 

  5. Kim A G, Ratovsky K G, Khakhinov V V, et al. The project of monitoring the ionosphere over Russian Federation by means of digital FMCW ionosondes network. In: URSI General Assembly and Scientific Symposium of International Union of Radio Science. Istanbul: URSI, 2011. G 04–6

    Google Scholar 

  6. Reinisch B W, Galkin I A. Global ionospheric radio observatory (GIRO). Earth Planets Space, 2011, 63: 377–381

    Article  Google Scholar 

  7. Kouba D, Koucká K P. Analysis of digisonde drift measurements quality. J Atmosph Solar-Terr Phys, 2012, 90: 212–221

    Article  Google Scholar 

  8. Chen G, Zhao Z Y, Zhang Y N, et al. Application of the oblique ionogram as vertical ionogram. Sci China Tech Sci, 2012, 55: 1240–1244

    Article  Google Scholar 

  9. Zhu Y T, Su Y. A type of M2-transmitter N2-receiver MIMO radar array and 3D imaging theory. Sci China Inf Sci, 2011, 54: 2147–2157

    Article  MathSciNet  Google Scholar 

  10. Kero A, Enell C, Roininen L, et al. The D-region ionosphere during the solar minimum as seen by the EISCAT Svalbard continuous 1-year IPY radar experiment. In: General Assembly and Scientific Symposium. Istanbul: IEEE, 2011. 1–4

    Google Scholar 

  11. Quan Y H, Zhang L, Guo R, et al. Generating dense and super-resolution ISAR image by combining bandwidth extrapolation and compressive sensing. Sci China Inf Sci, 2011, 54: 2158–2169

    Article  MathSciNet  Google Scholar 

  12. Dai J, Jin Y Q. Scattering simulation and reconstruction of a 3-D complex target using downward-looking stepfrequency radar. IEEE Trans Geosci Remot Sen, 2011, 49: 4035–4047

    Article  Google Scholar 

  13. Wang Q S, Huang H F, Dong Z, et al. High-precision, fast DEM reconstruction method for spaceborne InSAR. Sci China Inf Sci, 2011, 54: 2400–2410

    Article  Google Scholar 

  14. Brum C G M, Rodrigues F S, dos Santos P T, et al. A modeling study of foF2 and hmF2 parameters measured by the Arecibo incoherent scatter radar and comparison with IRI model predictions for solar cycles 21, 22, and 23. J Geophys Res, 2011, 116, doi: 10.1029/2010JA015727

    Google Scholar 

  15. He F, Zhang B C, Huang D H. Averaged NmF2 of cusp-latitude ionosphere in northern hemisphere for solar minimum—comparison between modeling and ESR during IPY. Sci China Tech Sci, 2012, 55: 1281–1286

    Article  Google Scholar 

  16. Li G, Ning B, Hu L, et al. A comparison of lower thermospheric winds derived from range spread and specular meteor trail echoes. J Geophys Res, 2012, 117: A03310

    Google Scholar 

  17. Li Z, Ning B. Planetary scale wave observations over low-latitude E region using simultaneous observations of VHF radar and ionosondeover Sanya (18.34 degrees N, 109.62 degrees E). J Geophys Res, 2010, 115, doi: 10.1029/2010JA015816

    Google Scholar 

  18. Li G, Ning B, Patra A K, et al. Investigation of low-latitude E and valley region irregularities: their relationship to equatorial plasma bubble bifurcation. J Geophys Res, 2011, 116: A11319

    Article  Google Scholar 

  19. Zhang S R, Coster A, Holt J, et al. Ionospheric longitudinal variations at midlatitudes: Incoherent scatter radar observation at Millstone Hill. Sci China Tech Sci, 2012, 55: 1153–1160

    Article  MATH  Google Scholar 

  20. Zhao M X, Lu J Y. Nonlinear dispersive scale Alfvén waves in magnetosphere-ionosphere coupling: physical processes and simulation results. Chin Sci Bull, 2012, 57: 1384–1392

    Article  Google Scholar 

  21. Xiao Z, Xiao S G, Hao Y Q, et al. The mophological features of ionospheric response to Typhoon. J Geophys Res, 2007, 112: A04304

    Article  Google Scholar 

  22. Hao Y Q, Xiao Z, Zhang D H. Responses of the ionosphere to the Great Sumantra Earthquake and Volcanic Eruption of Pinatubo. Chin Phys Lett, 2006, 23: 1955–1957

    Article  Google Scholar 

  23. Fang H X, Wang S C, Sheng Z. HF waves heating ionosphere F-layer. Chin Sci Bull, 2012, 57: 4036–4042

    Article  Google Scholar 

  24. Singer W, Hoffmann P, Kumar G K, et al. Atmospheric coupling by gravity waves: Climatology of gravity wave activity, mesospheric turbulence and their relations to solar activity. In: Climate and Weather of the Sun-Earth System (CAWSES). Netherlands: Springer, 2013. 409–427

    Chapter  Google Scholar 

  25. Paulino I, Takahashi H, Medeiros A F, et al. Mesospheric gravity waves and ionospheric plasma bubbles observed during the COPEX campaign. J Atmosph Solar-Terr Phys, 2011, 73: 1575–1580

    Article  Google Scholar 

  26. Xiao S G, Xiao Z, Shi J K, et al. Observational facts in revealing a close relation between Acoustic-Gravity Waves and midlatitude Spread-F. J Geophys Res, 2009, 114: A01303

    Google Scholar 

  27. Xiao S G, Shi J K, Zhang D H, et al. Observational study of daytime ionospheric irregularities associated with typhoon. Sci China Tech Sci, 2012, 55: 1302–1304

    Article  Google Scholar 

  28. Hao Y Q, Xiao Z, Zhang D H. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake. J Geophys Res, 2012, 117: A02305

    Google Scholar 

  29. Fritts D C, Lund T. Gravity wave influences in the thermosphere and ionosphere: Observations and recent modeling. In: Abdu M A, Pancheva D, Bhattacharyya A, eds. Aeronomy of the Earth’s Atmosphere and Ionosphere. IAGA Special Sopron Book Series 2. New York: Springer, 2011. 109–130

    Chapter  Google Scholar 

  30. Liu X, Zhou Q H, Yuan W, et al. Influences of non-isothermal atmospheric backgrounds on variations of gravity wave parameters. Sci China Tech Sci, 2012, 55: 1251–1257

    Article  Google Scholar 

  31. Zhang S D, Yi F. A numerical study on the propagation and evolution of resonant interacting gravity waves. J Geophys Res, 2004, 109: D24107

    Article  Google Scholar 

  32. Zhang S D, Yi F, Huang C M, et al. High vertical resolution analyses of gravity waves and turbulence at a midlatitude station. J Geophys Res, 2012, 117: D02103

    Article  Google Scholar 

  33. Li Q, Xu J Y, Yue J, et al. Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong in northern China. Ann Geophys, 2011, 29: 1401–1410

    Article  Google Scholar 

  34. Jiang G Y, Yuan W, Ning B Q, et al. A comparison of mesospheric winds measured by FPI and meteor radar located at 40N. Sci China Tech Sci, 2012, 55: 1245–1250

    Article  Google Scholar 

  35. Yu C, Yi F. Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements. J Atmos Solar-Terr Phys, 2008, 70: 1281–1288

    Article  Google Scholar 

  36. Xiong J G, Wan W X, Ning B Q, et al. Seasonal variations of night mesopause temperature in Beijing observed by SATI4. Sci China Tech Sci, 2012, 55: 1295–1301

    Article  Google Scholar 

  37. Zhu Y J, Xu J Y, Yuan W, et al. First experiment of spectrometric observation of the hydroxyl emission and rotational temperature in the mesopause in China. Sci China Tech Sci, 2012, 55: 1312–1318

    Article  Google Scholar 

  38. Fan Y, Yu C M, Zhang S D, et al. Seasonal variations of the nocturnal mesospheric Na and Fe layers at 30N. J Geophys Res, 2009, 114: D01301

    Google Scholar 

  39. Chen L, Yi F. Average properties and small-scale variations of the mesospheric Na and Fe layers as observed simultaneously by two closely collocated lidars at 30N. Ann Geophys, 2011, 29: 1037–1048

    Article  Google Scholar 

  40. Fan Y, Zhang S D, Yu C M, et al. Simultaneous and common-volume three-lidar observations of sporadic metal layers in the mesopause region. J Atmosph Solar-Terr Phys, 2013, 102: 172–184

    Article  Google Scholar 

  41. Feng W H, Marsh D R, Chipperfield M P, et al. A global atmospheric model of meteoric iron. J Geophys Res: Atmosph, 2013, 118: 1–19

    Google Scholar 

  42. Li T, Fang X, Liu W, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind. Appl Opt, 2012, 51: 5401–5411

    Article  Google Scholar 

  43. Xia H Y, Dou X K, Sun D S, et al. Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system level optical frequency control method. Opt Exp, 2012, 20: 15286–15300

    Article  Google Scholar 

  44. Hu X, Yan Z A, Guo S Y, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region. Chin Sci Bull, 2011, 56: 417–423

    Article  Google Scholar 

  45. Xiao C Y, Hua X, Smith A, et al. Short-term variability and summer-2009 averages of the mean wind and tides in the mesosphere and lower thermosphere over Langfang, China (39.41N, 116.71E). J Atmosph Solar-Terr Phys, 2013, 92: 65–77

    Article  Google Scholar 

  46. Chen X, Hu X, Xiao C. Variability of MLT winds and waves over mid-latitude during the 2000/2001 and 2009/2010 winter stratospheric sudden warming. Ann Geophys, 2012, 30: 991–1001

    Article  Google Scholar 

  47. Xiao C, Hu X. Applying artificial neural network to modeling the middle atmosphere. Adv Atmos Sci, 2010, doi: 10.1007/s00376-009-9019-1

    Google Scholar 

  48. Xiao C, Hu X. Atmosphere variation features during stratospheric sudden warming revealed by COSMIC radio occultation observation (in Chinese). Chin J Space Sci, 2011, 31: 34–43

    MathSciNet  Google Scholar 

  49. Wang C. New chains of space weather monitoring stations in China. Space Weather, 2010, 8: S08001, doi: 10.1029/2010SW000603

    Article  Google Scholar 

  50. Wang C, Zhang Q M, Chi P J, et al. Simultaneous observations of plasmaspheric and ionospheric variations during magnetic storms in 2011: first result from Chinese Meridian Project. J Geophys Res, 2013, 118: 99–104

    Article  Google Scholar 

  51. Jiang G Y, Xu J Y, Shi D B, et al. Observations of the first meteorological rocket of the Meridian Space Weather Monitoring Project. Chin Sci Bull, 2011, 56: 2131–2137

    Article  Google Scholar 

  52. Zhang D H, Xiao Z, Feng M, et al. Temporal dependence of GPS cycle slip related to ionospheric irregularities over China low-latitude region. Space Weather, 2010, 8: S04D08

    Google Scholar 

  53. Zhang D H, Cai L, Hao Y Q, et al. Solar cycle variation of the GPS cycle slip occurrence in China low-latitude region. Space Weather, 2010, 8: S10D10

    Google Scholar 

  54. Zhang X F, Le G M, Zhang Y X. Phase relationship between the relative sunspot number and solar 10.7 cm flux. Chin Sci Bull, 2012, 57: 2078–2082

    Article  Google Scholar 

  55. Rishbeth H, Garriott O K. Introduction to Ionospheric Physics. New York: Academic Press, 1969. 252

    Google Scholar 

  56. Liu L B, Wan W X, Chen Y D, et al. Solar activity effects of the ionosphere: a brief review. Chin Sci Bull, 2011, 56: 1202–1211

    Article  Google Scholar 

  57. Liu J, Liu L, Zhao B, et al. Response of the topside ionosphere to recurrent geomagnetic activity. J Geophys Res, 2010, 115: A12327

    Article  Google Scholar 

  58. Wang X G, Xiao C J, Pu Z Y, et al. Recent progresses in theoretical studies and satellite observations for collisionless magnetic reconnection. Chin Sci Bull, 2012, 57: 1369–1374

    Article  Google Scholar 

  59. Abdu M A. Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. J Atmos Solar-Terr Phys, 2011, doi:10.1016/j.jastp.2011.04.024

    Google Scholar 

  60. Xiao R, Xu J S, Ma S Y, et al. Abnormal distribution of ionospheric electron density during November 2004 super-storm by 3D CT reconstructions from IGS and LEO/GPS observations. Sci China Tech Sci, 2012, 55: 1230–1239

    Article  Google Scholar 

  61. Zhang D H, Mo X H, Cai L, et al. Impact factor for the ionospheric total electron content response to solar flare irradiation. J Geophys Res, 2011, 116: A04311

    Google Scholar 

  62. Leonovich L A, Tashchilin A V, Portnyagina O Y. Dependence of the ionospheric response on the solar flare parameters based on the theoretical modeling and GPS data. Geomagn Aeron Engl Transl, 2010, 50: 201–210

    Article  Google Scholar 

  63. Xu J, Smith A K, Liu H L, et al. Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). J Geophys Res, 2009, 114: D13107, doi:10.1029/2008JD011298

    Article  Google Scholar 

  64. Wu X, Yan J J. Estimating the outgoing longwave radiation from the FY-3B satellite visible infrared radiometer Channel 5 radiance observations. Chin Sci Bull, 2011, 56: 3480–3485

    Article  Google Scholar 

  65. Xu J, Smith A K, Liu H L, et al. Estimation of the equivalent Rayleigh friction in MLT region from the migrating diurnal tides observed by TIMED. J Geophys Res, 2009, doi:10.1029/2009JD012209

    Google Scholar 

  66. Xu J, Smith A K, Jiang G Y, et al. The seasonal variation of the Hough modes of the diurnal component of ozone heating evaluated from Aura/MLS observations. J Geophys Res, 2010, 115, doi: 10.1029/2009JD013179

  67. Immel T J, Mende S B, Frey H U, et al. Determination of low latitude plasma drift speeds from FUV images. Geophys Res Lett, 2003, 30: 1–7

    Article  Google Scholar 

  68. Lin C S, Immel T J, Yeh H C, et al. Simultaneous observations of equatorial plasma depletion by IMAGE and ROCSAT-1 satellites. J Geophys Res, 2005, 110: 6304

    Article  Google Scholar 

  69. Immel T J, Sagawa E, England S L. Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett, 2006, 33: L15108

    Article  Google Scholar 

  70. Wan W X, Liu L B, Pi X, et al. Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys Res Lett, 2008, 35: L12104

    Article  Google Scholar 

  71. Wan W X, Ren Z, Ding F, et al. A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere. J of Atmosph Solar-Terr Phys, 2012, 90: 52–60

    Article  Google Scholar 

  72. Xu J, Smith A K, Jiang G, et al. Strong longitudinal variations in the OH nightglow. Geophys Res Lett, 2010, 37: L21801, doi: 10.1029/2010GL043972

    Google Scholar 

  73. Gao H, Xu J, Wu Q. Seasonal and QBO variations in the OH nightglow emission observed by TIMED/SABER. J Geophys Res, 2010, 115: A06313, doi: 10.1029/2009JA014641

    Google Scholar 

  74. Gao H, Xu J Y, Chen G M, et al. Global distributions of OH and O2 (1.27 μm) nightglow emissions observed by TIMED satellite. Sci China Tech Sci, 2011, 54: 447–456

    Article  Google Scholar 

  75. Gao H, Xu J, Ward W, et al. Temporal evolution of nightglow emission responses to SSW events observed by TIMED/SABER. J Geophys Res, 2011, 116: D19110, doi: 10.1029/2011JD015936

    Article  Google Scholar 

  76. Xu J Y, Gao H, Smith A K, et al. Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region. J Geophys Res, 2012, 117: D02301, doi: 10.1029/2011JD016342

    Google Scholar 

  77. Xiong W, Xu J S, Wang H, et al. Effect of temporal variation rate of cross polar cap potential on the equatorial ionospheric vertical drift: a statistical study. Sci China Tech Sci, 2012, 55: 1217–1223

    Article  Google Scholar 

  78. He F, Zhang X X, Chen B, et al. Plasmaspheric trough evolution under different conditions of subauroral ion drift. Sci China Tech Sci, 2012, 55: 1287–1294

    Article  Google Scholar 

  79. Bankov L, Heelis R, Parrot M, et al. WN4 effect on longitudinal distribution of different ion species in the topside ionosphere at low latitudes by means of DEMETER, DMSP-F13 and DMSP-F15 data. Annal Geophys, 2009, 27: 2893–2902

    Article  Google Scholar 

  80. Chen G, Xu J, Wang W, et al. Plasma diffusive flows in the topside ionosphere from radio occulation measurements by COSMIC. Chin J Space Sci, 2010, 30: 121–131

    Google Scholar 

  81. Ma R, Xu J, Wang W, et al. Variations of the nighttime thermospheric mass density at low and middle latitudes. J Geophys Res, 2010, 115: A12301, doi: 10.1029/2010JA015784

    Article  Google Scholar 

  82. Xu J, Wang W, Lei J, et al. The effect of periodic variations of thermospheric density on CHAMP and GRACE orbits. J Geophys Res, 2011, 116: A02315, doi: 10.1029/2010JA015995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiMei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Z., Yu, S., Shi, H. et al. A brief of recent research progress on ionospheric disturbances. Sci. China Inf. Sci. 56, 1–9 (2013). https://doi.org/10.1007/s11432-013-5042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5042-z

Keywords

Navigation