Skip to main content
Log in

Wideband underwater sonar imaging via compressed sensing with scaling effect compensation

基于信号尺度效应补偿的宽带压缩感知声呐成像

  • Research Paper
  • Special Focus on High-Speed Signal Processing
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

By exploiting the sparsity of the imaging scene, compressed sensing (CS) imaging may provide an effective solution to cope with the tradeoff of high azimuth resolution and wide swath in synthetic aperture sonar imaging. However, existing CS imaging methods are based on narrowband signal model and the scaling effect on the echoes is normally omitted, which may seriously affect the ultimate image reconstruction performance. This paper establishes the wideband CS underwater sonar imaging model at first, where the scaling effect and Doppler frequency shift are jointly considered. Furthermore, two wideband CS imaging approaches are discussed in uniform scale-range space and velocity-range space, respectively. Besides, modified 1-norm minimization algorithms are proposed for the scene reconstruction in velocity-range space. Finally, numerical experiments are provided to demonstrate the effectiveness of the proposed model and the reconstruction algorithms.

摘要

现有雷达和声纳压缩感知成像仅考虑目标回波的时延和多普勒效应, 忽略了高速目标回波的尺度伸缩效应, 限制了其在声呐成像中的应用。 针对宽幅高分合成孔径声呐(SAS)成像需求, 本文基于对水中场景稀疏性和高速目标宽带信号尺度效应分析, 提出了基于信号尺度效应补偿的水中目标压缩感知宽带成像理论和方法。 上述工作现有文献没有涉及, 本文工作丰富了现有压缩感知成像理论和应用。 本文主要创新点如下:

  1. 1.

    基于宽带信号尺度伸缩效应分析和建模, 首次完整提出了基于水中目标单脉冲回波的宽带压缩感知成像新模型和新理论。

  2. 2.

    分别提出了宽带压缩感知距离-速度和距离-尺度两种成像空间, 形成了水中目标宽带压缩感知成像的理论框架。

  3. 3.

    基于相关度较高压缩矩阵对成像的影响, 针对距离-速度成像空间成像给出了改进的1范数最小化算法, 并提出了两种具体可行的实现方法。

  4. 4.

    基于实际声呐平台参数和成像场景, 通过详细仿真试验验证了相关理论算法的有效性, 并证明其便于工程实现和推广应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soumekh M. Synthetic Aperture Radar Signal Processing. New York: Wiley, 1999. 5–16

    MATH  Google Scholar 

  2. Yan H C, Peng S B, Zhu Z T, et al. Wideband sonar imaging via compressed sensing. In: Proceedings of OCEANS 2014, Taipei, 2014. 1–4

    Google Scholar 

  3. Currie A, Brow M A. Wide-swath SAR. IEE Proc Radar Sonar Navig, 1992, 139: 122–135

    Google Scholar 

  4. Griffiths H D, Mancini P. Ambiguity suppression in SARs using adaptive array techniques. In: Proceedings of International Geoscience and Remote Sensing Symposium, Espoo, 1991. 1015–1018

    Google Scholar 

  5. Currie A. Wide swath SAR imaging with multiple azimuth beams. In: Proceedings of IEE Colloquium on Synthetic Aperture Radar, London, 1989. 311–314

    Google Scholar 

  6. Suess M, Grafmueller B, Zahn R. A novel high resolution, wide swath SAR system. In: Proceedings of International Geoscience and Remote Sensing Symposium, Sydney, 2001. 1013–1015

    Google Scholar 

  7. Meng C Z, Xu J, Xia X G, et al. MIMO-SAR waveform separation based on inter-pulse phase modulation and range-Doppler decouple filtering. Electron Lett, 2013, 49: 420–422

    Article  Google Scholar 

  8. Wang L B, Xu J, Peng S B, et al. Optimal linear array configuration and DOF tradeoff for MIMO-SAR. Chin J Electron, 2011, 20: 380–384

    Google Scholar 

  9. Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52: 489–509

    Article  MATH  MathSciNet  Google Scholar 

  10. Baraniuk R, Steeghs P. Compressive radar imaging. In: Proceeding of IEEE Radar Conference, Boston, 2007. 128–133

    Google Scholar 

  11. Herman M A, Strohmer T. High-resolution radar via compressed sensing. IEEE Trans Signal Process, 2009, 57: 2275–2284

    Article  MathSciNet  Google Scholar 

  12. Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging. Proc IEEE, 2010, 98: 1006–1020

    Article  Google Scholar 

  13. Alltop W O. Complex sequences with low periodic correlations. IEEE Trans Inf Theory, 1980, 26: 350–354

    Article  MATH  MathSciNet  Google Scholar 

  14. Eldar Y C, Kutyniok G. Compressed Sensing: Theory and Applications. New York: Cambridge University Press, 2012. 15–26

    Book  Google Scholar 

  15. Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1999. 125–162

    Book  MATH  Google Scholar 

  16. Doneva M, Bornert P, Eggers H, et al. Compressed sensing reconstruction for magnetic resonance parameter mapping. Magn Reson Med, 2010, 64: 1114–1120

    Article  Google Scholar 

  17. Marco D, Baraniuk R. Spectral compressive sensing. Appl Comput Harmonic Anal, 2013, 35: 111–129

    Article  MATH  Google Scholar 

  18. Fannjiang A, Liao W. Coherence pattern-guided compressive sensing with unresolved grids. SIAM J Imag Sci, 2012, 5: 179–202

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Xu or Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Xu, J., Xia, XG. et al. Wideband underwater sonar imaging via compressed sensing with scaling effect compensation. Sci. China Inf. Sci. 58, 1–11 (2015). https://doi.org/10.1007/s11432-014-5264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5264-8

Keywords

关键词

Navigation