Skip to main content
Log in

System design and first airborne experiment of sparse microwave imaging radar: initial results

稀疏微波成像雷达系统设计与首次机载实验:初步结果

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we mainly study the system design of sparse microwave imaging radar and report some of the preliminary results of airborne experiments performed with it. Sparse microwave imaging radar is a novel concept which introduces the sparse signal processing theory to microwave imaging replacing the conventional matched filtering processing method. With the exploitation of the sparse microwave imaging, the radar system could achieve better performance. As a newly developed concept, the two main types of applications of sparse microwave imaging are found in adopting the sparse signal processing theory to current radar systems, and in designing an optimized sparse microwave imaging system. Here we are trying the latter that mainly aims at lower PRF and wider swath. We first introduce the theories of sparse microwave imaging radar and its imaging algorithm. Then we discuss the system designing principles, including the sampling scheme, signal bandwidth, SNR and multi-channel mode. Based on the relationships of these parameters, we provide a design example of radar parameters. In the end, we exploit an airborne experiment using our designed radar system with jittered azimuth sampling strategy. Some preliminary analysis from the experiment result is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baraniuk R G, Candès E, Elad M, et al. Applications of sparse representation and compressive sensing. Proc IEEE, 2010, 98: 906–909

    Article  Google Scholar 

  2. Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289–1306

    Article  MATH  MathSciNet  Google Scholar 

  3. Candès E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory, 2006, 52: 5406–5425

    Article  MATH  Google Scholar 

  4. Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math, 2006, 59: 1207–1223

    Article  MATH  Google Scholar 

  5. Hu L, Zhou J X, Shi Z G, et al. Compressed sensing of superimposed chirps with adaptive dictionary refinement. Sci China Inf Sci, 2013, 56: 122302

    Article  Google Scholar 

  6. Rao W, Li G, Wang X Q, el al. Comparison of parametric sparse recovery methods for ISAR image formation. Sci China Inf Sci. 2014, 57: 022315

    Article  Google Scholar 

  7. Zhang B C, Hong W, Wu Y. Sparse microwave imaging: principles and applications. Sci China Inf Sci, 2012, 55: 1722–1755

    Article  MATH  MathSciNet  Google Scholar 

  8. Ender J H G. On compressive sensing applied to radar. Signal Process, 2010, 90: 1402–1414

    Article  MATH  Google Scholar 

  9. Jiang C L, Zhang B C, Zhang Z, et al. Experimental results and analysis of sparse microwave imaging from space-borne radar raw data. Sci China Inf Sci, 2012, 55: 1801–1815

    Article  MathSciNet  Google Scholar 

  10. Currie A, Brown M A. Wide-swath SAR. IEE Proc Radar signal process, 1992, 139: 122–135

    Article  Google Scholar 

  11. Zhang Z, Zhang B C, Jiang C L, et al. Influence factors of sparse microwave imaging radar system performance: approaches to waveform design and platform motion analysis. Sci China Inf Sci. 2012, 55: 2301–2317

    Article  MATH  MathSciNet  Google Scholar 

  12. Fang J, Xu Z, Zhang B, et al. Fast compressed sensing SAR imaging based on approximated observation. IEEE J Sel Top Appl Earth Obs Rem Sens, 2014, 7: 352–363

    Article  Google Scholar 

  13. Krieger G, Gebert N, Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE Geosci Rem Sens Lett, 2004, 1: 260–264

    Article  Google Scholar 

  14. Fang J, Zeng J S, Xu Z B, et al. Efficient DPCA SAR imaging with fast iterative spectrum reconstruction method. Sci China Inf Sci, 2012, 55: 1838–1851

    Article  MATH  MathSciNet  Google Scholar 

  15. Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling. IEEE Trans Geosci Rem Sens, 1994, 32: 786–799

    Article  Google Scholar 

  16. Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math, 2004, 57: 1413–1457

    Article  MATH  Google Scholar 

  17. Tian Y, Jiang C L, Lin Y G, et al. An evaluation method for sparse microwave imaging radar system using phase diagrams. In: Proceedings of CIE Radar Conference, Chengdu, 2011

    Google Scholar 

  18. Candès E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Probl, 2007, 23: 969–985

    Article  MATH  Google Scholar 

  19. Patel V M, Easley G R, Healy D, et al. Compressed synthetic aperture radar. IEEE J Sel Top Signal Process, 2010, 4: 244–254

    Article  Google Scholar 

  20. Balakrishnan A. On the problem of time jitter in sampling. IRE Trans Inf Theory, 1962, 8: 226–236

    Article  MATH  Google Scholar 

  21. Geng B, Zhang H J, Wang H, el al. Approximate Poisson disk sampling on mesh. Sci China Inf Sci. 2013, 56: 092117

    Article  Google Scholar 

  22. Curlander J C, McDonough R N. Synthetic Aperture Radar: Systems and Signal Processing. New York: Wiley, 1991

    MATH  Google Scholar 

  23. Cumming I G, Wong F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, 2004

    Google Scholar 

  24. De Zan F, Guarnieri A M. TOPSAR: terrain observation by progressive scans. IEEE Trans Geosci Rem Sens, 2006, 44: 2352–2360

    Article  Google Scholar 

  25. Raney R K, Luscombe A P, Langham E, et al. Radarsat. Proc IEEE, 1991, 79: 839–849

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhang, Z., Jiang, C. et al. System design and first airborne experiment of sparse microwave imaging radar: initial results. Sci. China Inf. Sci. 58, 1–10 (2015). https://doi.org/10.1007/s11432-014-5266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5266-6

Keywords

关键词

Navigation