Skip to main content
Log in

Short-term link quality prediction using nonparametric time series analysis

基于非参数时间序列分析的短期链路质量预测算法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Wireless link quality prediction (LQP) is the foundation for proactive operations and is therefore a key technique in alleviating network performance degradation. However, accurate LQP is difficult because of the dynamic nature of wireless environments. A recent study found that fluctuations in intermediate quality links often show dynamics on a sub-second granularity, making the task even more challenging. In order to leverage the intermediate links, as well as fine-tune upper-layer protocols, we propose to use nonparametric modeling in nonlinear time series analysis that predicts short-term link quality online. Unlike existing studies, we do not define any new experimental or hypothetical models, or train models using a set of training data. Functional-coefficient autoregression is employed to predict the link dynamics at high time resolutions. We apply our approach and a local linear regression-based LQP (a typical parametric modeling approach) to both NS-2 simulation and empirical packet traces. The results indicate that the proposed method has much higher prediction accuracy and convergence speed than the local linear regression-based LQP under dynamic network conditions.

摘要

链路质量预测是执行先应式机制以缓解网络性能下降的关键技术. 然而, 无线环境的动态特性导致很难准确预测链路质量变化趋势. 最新研究表明, 中间链路具有高突发性, 且波动程度为亚秒级, 这为链路质量预测带来更为严峻的挑战. 本文提出利用非线性时间序列分析中的非参数建模方法建立预测模型, 在高时间分辨率下实时预测链路质量变化趋势, 为高层协议设计提供支持. 最后, 将基于 NS-2 的仿真实验数据和实测数据作为模型输入, 分析比较本文提出的算法和基于局部线性回归的链路质量预测算法的性能. 结果表明, 本文提出的链路质量预测模型在亚秒级尺度上具有更高的预测精度, 对于链路突发情况, 能够以较快速度收敛.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguayo D, Bicket J C, Biswas S, et al. Link-level measurements from an 802.11b mesh network. In: Proceedings of ACM SIGCOMM, Portland, 2004. 121–132

    Google Scholar 

  2. Becher A, Landsiedel O, Wehrle K. Towards short-term wireless link quality estimation. In: Proceedings of 5th Workshop on Embedded Networked Sensors, Charlottesville, 2008. 27–30

    Google Scholar 

  3. Alizai M H, Landsiedel O, Wehrle K. Exploiting the burstiness of intermediate-quality wireless links. Int J Distrib Sens Netw, 2012, 2012: 826702

    Article  Google Scholar 

  4. Srinivasan K, Kazandjieva M A, Agarwal S, et al. The β-factor: measuring wireless link burstiness. In: Proceedings of ACM Conference on Embedded Networked Sensor Systems, Bologna, 2008. 29–42

    Chapter  Google Scholar 

  5. Liu T, Cerpa A. Data-driven link quality prediction using link features. ACM Trans Sens Netw, 2014, 10: 37

    Google Scholar 

  6. Baccour N, Koubaa A, Youssef H, et al. F-LQE: a fuzzy link quality estimator for wireless sensor networks. In: Proceedings of 7th European Conference on Wireless Sensor Network, Coimbra, 2010. 240–255

    Google Scholar 

  7. Renner C, Ernst S, Weyer C, et al. Prediction accuracy of link-quality estimators. In: Proceedings of 8th European Conference on Wireless Sensor Networks. Berlin: Springer, 2011. 1–16

    Google Scholar 

  8. Chen R, Tsay R S. Functional coefficient autoregressive models. J Amer Statist Assoc, 1993, 421: 298–308

    MathSciNet  Google Scholar 

  9. Srinivasan K, Levis P. RSSI is under appreciated. In: Proceedings of the 3rd Workshop on Embedded Networked Sensors. Cambridge: IEEE, 2006

    Google Scholar 

  10. Halperin D, Hu W, Sheth A, et al. Predictable 802.11 packet delivery from wireless channel measurements. SIGCOMM Comput Commun Rev, 2010, 40: 159–170

    Article  Google Scholar 

  11. Woo A, Tong T, Culler D. Taming the underlying challenges of reliable multihop routing in sensor networks. In: Proceedings of ACM 1st International Conference on Embedded Networked Sensor Systems, New York, 2003. 14–27

    Chapter  Google Scholar 

  12. Couto D S J D, Aguayo D, Bicket J, et al. A high throughput path metric for multi-hop wireless routing. In: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, San Diego, 2003. 134–146

    Google Scholar 

  13. Cerpa A, Wong J L, Potkonjak M, el al. Temporal properties of low power wireless links: modeling and implications on multi-hop routing. In: Proceedings of 6th ACM International Symposium on Mobile Ad-hoc Networking and Computing, Urbana-champaign, 2005. 414–425

    Google Scholar 

  14. Fonseca R, Gnawali O, Jamieson K, et al. Four-bit wireless link estimation. In: Proceedings of 6th Workshop on Hot Topics in Networks, Atlanta, 2007

    Google Scholar 

  15. Boano C A, Zuniga M, Voigt T, et al. The Triangle metric: fast link quality estimation for mobile wireless sensor networks. In: Proceedings 19th International Conference on Computer Communications and Networks, Zurich, 2010. 1–7

    Google Scholar 

  16. Deek L, Garcia-Villegas E, Belding E, et al. Joint rate and channel width adaptation for 802.11 MIMO wireless networks. In: Proceedings of 10th International Conference on Sensing, Communication, and Networking, New Orleans, 2013. 167–175

    Google Scholar 

  17. Farkas K, Hossmann T, Legendre F, et al. Link quality prediction in mesh networks. Comput Commun, 2008, 8: 1497–1512

    Article  Google Scholar 

  18. Wang Y, Martonosi M, Peh L S. Predicting link quality using supervised learning in wireless sensor networks. ACM SIGMOBILE Mob Comput Commun Rev, 2007, 3: 71–83

    Google Scholar 

  19. Liu T, Cerpa A. TALENT: temporal adaptive link estimator with no training. In: Proceedings of 10th ACM Conference on Embedded Network Sensor Systems, New York, 2012. 253–266

    Chapter  Google Scholar 

  20. Lin T H, Ng I H, Lau S Y, et al. Impact of beacon packet losses to RSSI-signature-based indoor localization sensor networks. In: Proceedings of 10th International Conference on Mobile Data Management: Systems, Services and Middleware, Taipei, 2009. 389–390

    Google Scholar 

  21. Jiang J, Li J D, Hou R H, et al. Network selection policy based on effective capacity in heterogeneous wireless communication systems. Sci China Inf Sci, 2014, 52: 022309

    Google Scholar 

  22. Akima H. A method of smooth curve fitting. ESSA Technical Report ERL 101-ITS 73, Washington, 1969

    Google Scholar 

  23. Gijbels I, Pope A, Wand M P. Understanding exponential smoothing via kernel regression. J Roy Statist Soc Ser B-Stat Method, 1999, 61: 39–50

    Article  MathSciNet  Google Scholar 

  24. Fan J Q, Gijbels I. Local Polynomial Modeling and Its Applications: Monographs on Statistics and Applied Probability. London: Chapman and Hall, 1996

    Google Scholar 

  25. Cai Z, Fan J Q, Yao Q W. Functional-coefficient regression models for nonlinear time series. J Amer Statist Assoc, 2000, 5: 941–956

    Article  MathSciNet  Google Scholar 

  26. Bruno G. Forecasting using functional coefficients autoregressive models. MPRA Paper 42335, University Library of Munich, 2008

    Google Scholar 

  27. Long X, Sikdar B. A real-time algorithm for long range signal strength prediction in wireless networks. In: Proceedings of IEEE Wireless Communications and Networking Conference, Las Vegas, 2008. 1120–1125

    Google Scholar 

  28. Aksu S, Kurt G. Effect of Nakagami-m fading on the QoE performance of VoIP in wireless mesh networks. In: Proceedings of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Lucca, 2011. 1–6

    Google Scholar 

  29. Ariyakhajorn J, Wannawilai P, Sathitwiriyawong C. A comparative study of Random Waypoint and Gauss-Markov mobility models in the performance evaluation of MANET. In: Proceedings of International Symposium on Communications and Information Technologies, Thailand, 2006. 894–899

    Google Scholar 

  30. Aschenbruck N, Ernst R, Gerhards-Padilla E, el al. Bonnmotion—a mobility scenario generation and analysis tool. In: Proceedings of 3rd International ICST Conference on Simulation Tools and Techniques, Torremolinos, 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiNa Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, L., Zhang, P., Feng, Z. et al. Short-term link quality prediction using nonparametric time series analysis. Sci. China Inf. Sci. 58, 1–15 (2015). https://doi.org/10.1007/s11432-014-5270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5270-x

Keywords

关键词

Navigation