Skip to main content
Log in

Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer

  • Research Paper
  • Special Focus on Advanced Nonlinear Control of Hypersonic Flight Vehicles
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes an anti-disturbance control scheme for the near space vehicle (NSV) based onterminal sliding mode (TSM) technique and disturbance observer method. To tackle the system uncertainty andthe time-varying unknown external disturbance of the NSV, a disturbance observer based on TSM technique isdesigned which can render the disturbance estimate error convergent in finite time. Furthermore, an auxiliarydesign system is introduced to analyze the input saturation effect. Based on the developed disturbance observerand the auxiliary design system, an anti-disturbance attitude control scheme is developed for the NSV usingthe TSM technique to speed up the convergence of all signals in closed-loop system. For the closed-loop system,the stability is rigorously proved by using the Lyapunov method and we guarantee the finite time convergenceof all closed-loop system signals in the presence of the integrated affection of the system uncertainty, the inputsaturation, and the unknown external disturbance. Simulation study results are given to show the effectivenessof the developed TSM anti-disturbance attitude control scheme using the disturbance observer and the auxiliarysystem for the NSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu B, Sun F C, Liu H P, et al. Adaptive kriging controller design for hypersonic flight vehicle via back-stepping. IETContr Theory Appl, 2012, 6: 487–497

    Article  MathSciNet  Google Scholar 

  2. Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci China Inf Sci, 2014, doi: 10.1007/s11432-014-5273-7

    Google Scholar 

  3. Shi W, Jing Z L, Yang Y S. Ascent trajectory optimization for hypersonic vehicles via Gauss pseudospectral method. Int J Space Sci Eng, 2013, 1: 64–81

    Article  Google Scholar 

  4. Xu B, Wang D W, Sun F C, et al. Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn, 2012, 70:269–278

    Google Scholar 

  5. Gao D X, Sun Z Q. Fuzzy tracking control design for hypersonic vehicles via T-S model. Sci China Inf Sci, 2011, 54:521–528

    Google Scholar 

  6. Xu B, Gao D X, Wang S X. Adaptive neural control based on HGO for hypersonic flight vehicles. Sci China Inf Sci,2011, 54: 511–520

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen L, Jiang C S, Pu M. Online-SVR-compensated nonlinear generalized predictive control for hypersonic vehicles. Sci China Inf Sci, 2011, 54: 551–562

    Article  MathSciNet  Google Scholar 

  8. Chen M, Zhou Y L, Guo W. Robust tracking control for uncertain MIMO nonlinear systems with input saturationusing RWNNDO. Neurocomputing, 2014, 114: 436–447

    Article  Google Scholar 

  9. Xu B, Yang C G, Shi Z K. Reinforcement learning output feedback NN control using deterministic learning technique. IEEE Trans Neural Netw Learn Syst, 2014, 25: 635–641

    Article  Google Scholar 

  10. Li Z J, Yang C G, Tang Y. Decentralised adaptive fuzzy control of coordinated multiple mobile manipulators interactingwith non-rigid environments. IET Contr Theory Appl, 2013, 7: 397–410

    Article  MathSciNet  Google Scholar 

  11. Xu B, Shi Z K, Yang C G, et al. Composite neural dynamic surface control of a class of uncertain nonlinear systemsin strict-feedback form. IEEE Trans Cybern, 2014, 44: 2626–2634

    Article  Google Scholar 

  12. Yang C C, Zhai L F, Ge S S, et al. Adaptive model reference control of a class of MIMO discrete-time systemswith compensation of nonparametric uncertainty. In: Proceedings of American Control Conference, Seattle, 2008. 4111–4116

    Google Scholar 

  13. Xu B, Huang X Y, Wang D W, et al. Dynamic surface control of constrained hypersonic flight models with parameterestimation and actuator compensation. Asian J Control, 2014, 16: 162–174

    Article  MATH  MathSciNet  Google Scholar 

  14. Du Y L, Wu Q X, Jiang C S, et al. Adaptive functional link network control of near-space vehicles with dynamicaluncertainties. J Syst Eng Electron, 2010, 21: 868–876

    Article  Google Scholar 

  15. Chen M, Jiang B, Wu Q X, et al Robust control of near-space vehicles with input backlash-like hysteresis. Proc InstMech Eng I–J Syst Contr Eng, 2013, 227: 635–644

    Google Scholar 

  16. Jiang B, Gao Z F, Shi P, et al. Adaptive fault-tolerant tracking control of near space vehicle using Takagi-Sugenofuzzy models. IEEE Trans Fuzzy Syst, 2010, 18: 1000–1007

    Article  Google Scholar 

  17. Xu Y F, Jiang B, Tao G, et al. Fault tolerant control for a class of nonlinear systems with application to near spacevehicle. Circuits Syst Signal Process, 2011, 30: 655–672

    Article  MATH  MathSciNet  Google Scholar 

  18. Xu B, Shi Z K, Yang C G. Composite fuzzy control of a class of uncertain nonlinear systems with disturbance observer. Nonlinear Dyn, 2015, 80: 341–351

    Article  MathSciNet  Google Scholar 

  19. Yang J, Li S H, Yu X H. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron, 2013, 60: 160–169

    Article  MathSciNet  Google Scholar 

  20. Yang J, Li S H, Sun C Y. Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonicvehicles. IEEE Trans Aerosp Electron Syst, 2013, 49: 1263–1275

    Article  Google Scholar 

  21. Liu C, Chen W H, Andrews J. Tracking control of small-scale helicopters using explicit nonlinear MPC augmentedwith disturbance observers. Control Eng Practice, 2012, 20: 258–268

    Article  Google Scholar 

  22. Chen W H, Ballance D J, Gawthrop P J, et al. A nonlinear disturbance observer for robotic manipulators. IEEETrans Ind Electron, 2000, 47: 932–938

    Article  Google Scholar 

  23. Chen M, Chen W H, Wu Q X. Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems usingdisturbance observer. Sci China Inf Sci, 2014, 57: 012207

    Google Scholar 

  24. Chen M, Ge S S. Direct adaptive neural control for a class of uncertain non-affine nonlinear systems based on disturbanceobserver. IEEE Trans Cybern, 2013, 43: 1213–1225

    Article  Google Scholar 

  25. Li S H, Yang J. Robust autopilot design for bank-to-turn missiles using disturbance observers. IEEE Trans Aerosp Electron Syst, 2013, 49: 558–579

    Article  Google Scholar 

  26. Guo L, Chen W H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int JRobust Nonlinear Contr, 2005, 15: 109–125

    Article  MATH  Google Scholar 

  27. Du Y L, Wu Q X, Jiang C S, et al. Robust optimal predictive control for a near-space vehicle based on functional linknetwork disturbance observer. J Astronaut, 2009, 30: 1489–1497

    Google Scholar 

  28. Chen M, Jiang B. Robust attitude control of near space vehicles with time-varying disturbances. Int J Contr AutomatSyst, 2013, 11: 182–187

    Article  MathSciNet  Google Scholar 

  29. Chen M, Wu Q X, Cui R X. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans, 2013, 52: 198–206

    Article  Google Scholar 

  30. Zhou B, Gao H J, Lin Z L, et al. Stabilization of linear systems with distributed input delay and input saturation. Automatica, 2012, 48: 712–724

    Article  MATH  MathSciNet  Google Scholar 

  31. Lu P. Nonlinear systems with control and state constraints. Opt Contr Appl Methods, 1997, 18: 313–326

    Article  MATH  Google Scholar 

  32. Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input saturation. Automatica, 2011, 47: 452–465

    Article  MATH  MathSciNet  Google Scholar 

  33. Chen M, Ge S S, How B. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systemswith input nonlinearities. IEEE Trans Neural Netw, 2010, 21: 796–812

    Article  Google Scholar 

  34. Wang H Q, Chen B, Liu X P, et al. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinearsystems with input constraints. IEEE Trans Cybern, 2013, 43: 2093–2104

    Article  MathSciNet  Google Scholar 

  35. Li Y M, Tong S C, Li T S. Adaptive fuzzy output-feedback control for output constrained nonlinear systems in thepresence of input saturation. Fuzzy Sets Syst, 2014, 248: 138–155

    Article  MathSciNet  Google Scholar 

  36. Wang H Q, Chen B, Liu X P, et al. Adaptive neural tracking control for stochastic nonlinear strict-feedback systemswith unknown input saturation. Inf Sci, 2014, 269: 300–315

    Article  MathSciNet  Google Scholar 

  37. Lu P. Tracking control of nonlinear systems with bounded controls and control rates. Automatica, 1997, 22: 1199–1202

    Article  Google Scholar 

  38. Chen M, Wu Q X, Jiang C S, et al. Guaranteed transient performance based control for near space vehicles with inputsaturation. Sci China Inf Sci, 2014, 57: 1–12

    MathSciNet  Google Scholar 

  39. Wang J Y, Sun Z W. 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying. ActaAstronaut, 2012, 73: 76–87

    Article  Google Scholar 

  40. Zhang R M, Sun C Y, Zhang J M, et al. Second-order terminal sliding mode control for hypersonic vehicle in cruisingflight with sliding mode disturbance observer. J Control Theory Appl, 2013, 11: 299–305

    Article  Google Scholar 

  41. Ni S B, Shan J Y. Smooth second-order nonsingular terminal sliding mode control for reusable launch vehicles. Int JIntell Comput Cybern, 2014, 7: 95–110

    Article  MathSciNet  Google Scholar 

  42. Man Z H, Yu X H. Terminal sliding mode control of MIMO linear systems. IEEE Trans Circuits Syst I-FundamentalTheory Appl, 1997, 44: 1065–1070

    Article  MathSciNet  Google Scholar 

  43. Lin D, Wang X Y, Yao Y. Fuzzy neural adaptive tracking control of unknown chaotic systems with input saturation. Nonlinear Dyn, 2012, 67: 2889–2897

    Article  MATH  MathSciNet  Google Scholar 

  44. Hall C E, Shtessel Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle. J Guid ControlDyn, 2006, 29: 1315–1328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mou Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Ren, B., Wu, Q. et al. Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci. China Inf. Sci. 58, 1–12 (2015). https://doi.org/10.1007/s11432-015-5337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5337-3

Keywords

Navigation