Skip to main content
Log in

Energy-efficiency-aware relay selection in distributed full duplex relay network with massive MIMO

分布式全双工中继大规模MIMO系统中基于能效的中继选择算法研究

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper considers a distributed full duplex relay network where multiple sources simultaneously transmit their signals to multiple destinations via the cooperation of a set of relay stations (RSs). Each RS is assumed to be equipped with large antenna arrays while all sources and destinations only have a single antenna. We assume the channels are Rician fading and the RSs use linear processing to process the signals with imperfect channel state information (CSI). We derive the closed-form expressions of the end-to-end achievable rates for the maximum-ratio combining/matched-filter (MRC/MF) and the zero-forcing (ZF) processing. These results are then used to pursue a detailed analysis of the power saving of the relay network. Then we study the energy-efficiency-aware relay selection strategy since the energy efficiency affects network lifetime in future wireless network. We propose a sub-optimal strategy with low complexity that only requires the statistical CSI. Simulations show that the energy efficiency of the system can be improved with optimal power allocation and our proposed strategy performs very close to the exhaustive search algorithm which is optimal.

摘要

创新点

本文将全双工中继与大规模MIMO技术相结合, 并假设每个中继端与用户间的信道为莱斯信道, 研究了分布式全双工中继大规模MIMO系统中继选择的算法。 首先本文给出了每个中继段采用匹配滤波和迫零技术来对信号进行处理时, 系统端到端的可达速率的闭式表达式, 并分析了系统的功率效率性能。 然后基于此闭式表达式, 以最大化系统的能量效率为目标, 提出了近似增量选择的中继选择算法。 该算法只需要系统获知中继端与用户端之间的信道统计特征信息, 从而有效降低了系统开销。 仿真结果表明, 该算法能够达到与最优算法相近的性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marzetta T. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590–3600

    Article  Google Scholar 

  2. Larsson E, Edfors O, Tufvesson F, et al. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 2014, 52: 186–195

    Article  Google Scholar 

  3. Ngo H Q, Larsson E, Marzetta T. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436–1449

    Article  Google Scholar 

  4. Laneman J, Tse D, Wornell G W. Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory, 2004, 50: 3062–3080

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang T, Cano A, Giannakis G, et al. High-performance cooperative demodulation with decode-and-forward relays. IEEE Trans Commun, 2007, 55: 1427–1438

    Article  Google Scholar 

  6. Riihonen T, Werner S, Wichman R. Hybrid full-duplex/half-duplex relaying with transmit power adaptation. IEEE Trans Wirel Commun, 2011, 10: 3074–3085

    Article  Google Scholar 

  7. Riihonen T, Werner S, Wichman R. Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Trans Signal Process, 2011, 59: 5983–5993

    Article  MathSciNet  Google Scholar 

  8. Choi J I, Jain M, Srinivasan K, et al. Achieving single channel, full duplex wireless communication. In: Proceedings of the 16th Annual International Conference on Mobile Computing and Networking, Chicago, 2010. 1–12

    Google Scholar 

  9. Duarte M, Sabharwal A. Full-duplex wireless communications using off-the-shelf radios: feasibility and first results. In: Proceedings of the 44th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2010. 1558–1562

    Google Scholar 

  10. Everett E, Duarte M, Dick C, et al. Empowering full-duplex wireless communication by exploiting directional diversity. In: Proceedings of the 45th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2011. 2002–2006

    Google Scholar 

  11. Ngo H Q, Suraweera H, Matthaiou M, et al. Multipair full-duplex relaying with massive arrays and linear processing. IEEE J Sel Areas Commun, 2014, 32: 1721–1737

    Article  Google Scholar 

  12. Bletsas A, Khisti A, Reed D, et al. A simple cooperative diversity method based on network path selection. IEEE J Sel Areas Commun, 2006, 24: 659–672

    Article  Google Scholar 

  13. Costa D, Aissa S. Performance analysis of relay selection techniques with clustered fixed-gain relays. IEEE Signal Process Lett, 2010, 17: 201–204

    Article  Google Scholar 

  14. Krikidis I, Suraweera H, Smith P, et al. Full-duplex relay selection for amplify-and-forward cooperative networks. IEEE Trans Wirel Commun, 2012, 11: 4381–4393

    Article  Google Scholar 

  15. Rui X, Hou J, Zhou L. On the performance of full-duplex relaying with relay selection. Electron Lett, 2010, 46: 1674–1676

    Article  Google Scholar 

  16. Cui H Y, Ma M, Song L Y, et al. Relay selection for two-way full duplex relay networks with amplify-and-forward protocol. IEEE Trans Wirel Commun, 2014, 13: 3768–3777

    Article  Google Scholar 

  17. Rappaport T, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: It will work. IEEE Access, 2013, 1: 335–349

    Article  Google Scholar 

  18. Swindlehurst A L, Ayanoglu E, Heydari P, et al. Millimeter-wave massive MIMO: the next wireless revolution. IEEE Commun Mag, 2014, 52: 56–62

    Article  Google Scholar 

  19. Brady J, Behdad N, Sayeed A. Beamspace MIMO for millimeter-wave communications: system architecture, modeling, analysis, and measurements. IEEE Trans Antenn Propag, 2013, 61: 3814–3827

    Article  Google Scholar 

  20. Sayeed A, Brady J. Beamspace MIMO for high-dimensional multiuser communication at millimeter-wave frequencies. In: Proceedings of IEEE Global Communications Conference, Atlanta, 2013. 3679–3684

    Google Scholar 

  21. Zhang Q, Jin S, Wong K K, et al. Power scaling of uplink massive MIMO systems with arbitrary-rank channel means. IEEE J Sel Top Signal Process, 2014, 8: 966–981

    Article  Google Scholar 

  22. Suraweera H A, Ngo H Q, Duong T Q, et al. Multi-pair amplify-and-forward relaying with very large antenna arrays. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 4635–4640

    Google Scholar 

  23. Liu Y, Xia X G, Zhang H. Distributed linear convolutional space-time coding for two-relay full-duplex asynchronous cooperative networks. IEEE Trans Wirel Commun, 2013, 12: 6406–6417

    Article  Google Scholar 

  24. Riihonen T, Werner S, Wichman R. Optimized gain control for single-frequency relaying with loop interference. IEEE Trans Wirel Commun, 2009, 8: 2801–2806

    Article  Google Scholar 

  25. Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River: Prentice Hall, 1993. 380–392

    Google Scholar 

  26. Riihonen T, Werner S, Wichman R. Transmit power optimization for multiantenna decode-and-forward relays with loopback self-interference from full-duplex operation. In: Proceedings of the 45th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2011. 1408–1412

    Google Scholar 

  27. Yang H, Marzetta T. Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J Sel Areas Commun, 2013, 31: 172–179

    Article  Google Scholar 

  28. Gharavi A M, Gershman A. Fast antenna subset selection in MIMO systems. IEEE Trans Signal Process, 2004, 52: 339–347

    Article  MathSciNet  Google Scholar 

  29. Weeraddana P, Codreanu M, Latva-aho M, et al. Resource allocation for cross-layer utility maximization in wireless networks. IEEE Trans Veh Technol, 2011, 60: 2790–2809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tao, C., Liu, L. et al. Energy-efficiency-aware relay selection in distributed full duplex relay network with massive MIMO. Sci. China Inf. Sci. 60, 22309 (2017). https://doi.org/10.1007/s11432-016-5601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-5601-1

Keywords

关键词

Navigation