Skip to main content
Log in

Fault-tolerant cooperative control for multiple UAVs based on sliding mode techniques

  • Research Paper
  • Special Focus on Formation Control of Unmanned Systems
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a fault-tolerant cooperative control (FTCC) design approach for multiple unmanned aerial vehicles (UAVs), where the outer-loop control and the inner-loop fault accommodation are explicitly considered. The reference signals for the inner-loop of the follower UAV can be directly produced by resorting to a proportional control. In the presence of actuator faults, the estimation of the fault information can be completed within finite time. Moreover, the control of the inner-loop is reconfigured based on the fault information adaptation and sliding mode techniques, such that the deleterious effects due to failed actuators can be compensated within finite time. Simulations of UAV cooperative flight are conducted to illustrate the effectiveness of this FTCC scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duan H B, Li H, Luo Q N, et al. A binocular vision-based UAVs autonomous aerial refueling platform. Sci China Inf Sci, 2016, 59: 053201

    Article  Google Scholar 

  2. Giulietti F, Innocenti M, Napolitano M, et al. Dynamic and control issues of formation flight. Aerosp Sci Tech, 2005, 9: 65–71

    Article  MATH  Google Scholar 

  3. Valavanis K, Vachtsevanos G. Handbook of Unmanned Aerial Vehicles. Berlin: Springer, 2015. 221–234

    Book  Google Scholar 

  4. Yuan C, Zhang Y M, Liu Z X. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles. Can J Forest Res, 2015, 45: 783–792

    Article  Google Scholar 

  5. Casbeer D W, Beard R W, McLain T W, et al. Forest fire monitong with multiple small UAVs. In: Proceedings of American Control Conference, Portland, 2005. 3530–3535

    Google Scholar 

  6. Rango A, Laliberte A, Herrick J E, et al. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. J Appl Remote Sens, 2009, 3: 033542

    Article  Google Scholar 

  7. Kingston D, Beard R W, Holt R S. Decentralized perimeter surveillance using a team of UAVs. IEEE Trans Robot, 2008, 24: 1394–1404

    Article  Google Scholar 

  8. Goodrich M A, Morse B S, Gerhardt D, et al. Supporting widerness search and rescue using a camera-equipped mini UAV. J Field Robot, 2008, 25: 89–110

    Article  Google Scholar 

  9. Larrauri J I, Sorrosal G, Gonzalez M. Automatic system for overhead power line inspection using an unmanned aerial vehicle — RELIFO project. In: Proceedings of International Conference on Unmanned Aircraft Systems, Atlanta, 2013. 244–252

    Google Scholar 

  10. Pachter M, D’Azzo J J, Proud A W. Tight formation flight control. J Guid Control Dynam, 2001, 24: 246–254

    Article  Google Scholar 

  11. Gu Y, Seanor B, Campa G, et al. Design and flight testing evaluation of formation control laws. IEEE Trans Contr Syst Tech, 2006, 14: 1105–1112

    Article  Google Scholar 

  12. Marshall J A, Tsai D. Periodic formations of multivehicle systems. IET Control Theory A, 2011, 5: 389–396

    Article  MathSciNet  Google Scholar 

  13. Zhang X Y, Duan H B. Altitude consensus based 3D flocking control for fixed-wing unmanned aerial vehicle swarm trajectory tracking. J Aerosp Eng, 2016, 230: 2628–2638

    Google Scholar 

  14. Lin W. Distributed UAV formation control using differential game approach. Aerosp Sci Tech, 2014, 35: 54–62

    Article  Google Scholar 

  15. Zhang Y M, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems. Ann Rev Contr, 2008, 32: 229–252

    Article  Google Scholar 

  16. Yu X, Jiang J. A survey of fault-tolerant controllers based on safety-related issues. Ann Rev Contr, 2015, 39: 46–57

    Article  Google Scholar 

  17. Yu X, Jiang J. Hybrid fault-tolerant flight control system design against partial actuator failures. IEEE Trans Contr Syst Tech, 2012, 20: 871–886

    Article  Google Scholar 

  18. Yu X, Liu Z X, Zhang Y M. Fault-tolerant flight control with finite-time adaptation under actuator stuck failures. IEEE Trans Contr Syst Tech, doi: 10.1109/TCST.2016.2603072

  19. Xiao B, Yin S. Velocity-free fault and uncertainty attenuation control for a class of nonlinear systems. IEEE Trans Ind Electron, 2016, 63: 4400–4411

    Article  Google Scholar 

  20. Xiao B, Yin S, Wu L G. A structure simple controller for satellite attitude tracking maneuver. IEEE Trans Ind Electron, 2017, 64: 1436–1446

    Article  Google Scholar 

  21. Yu X, Zhang Y M, Liu Z X. Fault-tolerant flight control design with explicit consideration of reconfiguration transients. J Guid Contr Dynam, 2016, 39: 556–563

    Article  Google Scholar 

  22. Beard R W, McLain T W, Nelson D B, et al. Decentralized cooperative aerial surveillance using fixed-wing miniature. Proc IEEE, 2006, 94: 1306–1324

    Article  Google Scholar 

  23. Franco E, Parisini T, Polycarpou M M. Design and stability analysis of cooperative receding-horizon control of linear discrete-time agents. Int J Robust Nonlin, 2007, 17: 982–1001

    Article  MathSciNet  MATH  Google Scholar 

  24. Izadi H A, Gordon B W, Zhang Y M. Decentralized receding horizon control for cooperative multiple vehicles subject to communication delay. J Guid Contr Dynam, 2009, 32: 1959–1965

    Article  Google Scholar 

  25. Abdessameud A, Tayebi A. Formation control of VTOL unmanned aerial vehicles with communication delays. Automatica, 2011, 47: 2383–2394

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang H, Staroswiecki M, Jiang B, et al. Fault tolerant cooperative control for a class of nonlinear multi-agent systems. Syst Contr Lett, 2011, 60: 271–277

    Article  MathSciNet  MATH  Google Scholar 

  27. Izadi H A, Gordon B W, Zhang Y M. Hierarchical decentralized receding horizon control of multiple vehicles with communication failures. IEEE Trans Aero Electron Syst, 2013, 49: 744–759

    Article  Google Scholar 

  28. Innocenti M, Pollini L, Giulietti F. Management of communication failures in formation flight. J Aerosp Comput Inf Commun, 2004, 1: 19–35

    Article  Google Scholar 

  29. Alwi H, Edwards C. Fault detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme. IEEE Trans Contr Syst Tech, 2008, 16: 499–510

    Article  Google Scholar 

  30. Xiao B, Hu Q, Zhang Y M. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans Contr Syst Tech, 2012, 20: 1605–1612

    Article  Google Scholar 

  31. Li P, Ma J J, Zheng Z Q. Robust adaptive multivariable higher-order sliding mode flight control for air-breathing hypersonic vehicle with actuator failures. Int J Adv Robot Syst, 2016, 13: 1–12

    Article  Google Scholar 

  32. Li P, Ma J J, Zheng Z Q. Disturbance-observer-based fixed-time second-order sliding mode control of an air-breathing hypersonic vehicle with actuator faults. J Aerosp Eng, doi: 10.1177/0954410016683732

  33. Qian M S, Jiang B, Xu D Z. Fault tolerant control scheme design for the formation control system of unmanned aerial vehicles. J Syst Contr Eng, 2013, 227: 626–634

    Google Scholar 

  34. Xu Q, Yang H, Jiang B, et al. Fault tolerant formation control of UAVs subject to permanent and intermittent faults. J Intell Robot Syst, 2014, 73: 589–602

    Article  Google Scholar 

  35. Liu Z X, Yuan C, Yu X, et al. Leader-follower formation control of unmanned aerial vehicles in the presence of obstacles and actuator faults. Unmanned Syst, 2016, 4: 197–211

    Article  Google Scholar 

  36. Yu X, Liu Z X, Zhang Y M. Fault-tolerant formation control of multiple UAVs in the presence of actuator faults. Int J Robust Nonlin, 2016, 26: 2668–2685

    Article  MathSciNet  MATH  Google Scholar 

  37. Cheng C C, Chien S H. Adaptive sliding mode controller design based on T-S fuzzy system models. Automatica, 2006, 42: 1005–1010

    Article  MathSciNet  MATH  Google Scholar 

  38. Utkin V I. Sliding Modes in Control and Optimization. Berlin: Springer, 1992. 108–112

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Natural Sciences and Engineering Research Council of Canada, National Natural Science Foundation of China (Grant Nos. 51575167, 61403407, 61573282, 61603130), Shaanxi Province Natural Science Foundation (Grant No. 2015JZ020), Hunan Province Natural Science Foundation (Grant No. 2017JJ3041), and Fundamental Research Funds for the Central Universities (Grant No. 531107040965). The authors would like to thank the support from the Collaborative Innovation Center of Intelligent New Energy Vehicle and the Hunan Collaborative Innovation Center for Green Car. Thanks also to the associate editor and anonymous reviewers for the constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yu, X., Peng, X. et al. Fault-tolerant cooperative control for multiple UAVs based on sliding mode techniques. Sci. China Inf. Sci. 60, 070204 (2017). https://doi.org/10.1007/s11432-016-9074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-9074-8

Keywords

Navigation