Skip to main content
Log in

Improved turn-on behavior in a diode-triggered silicon-controlled rectifier for high-speed electrostatic discharge protection

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A conventional diode-triggered silicon-controlled rectifier (DTSCR) structure with a layout strategy for electrostatic discharge (ESD) protection is presented and confirmed in a 65-nm CMOS technology. The modified device is featured by a scaled-down trigger-diode string, which shortens its turn-on time using a variable scaling factor. To confirm the parasitic resistance adjustments of the modified DTSCR, transmission line pulsing (TLP)/very fast transmission line pulsing (VF-TLP) tests and simulations are performed on the device. Compared to a conventional DTSCR, this structure exhibits an improved turn-on speed and robustness, which are suitable for I/O protection of ESD events in the nanosecond range, particularly the charged-device model (CDM) event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ker M D, Lin C Y. ESD protection consideration in nanoscale CMOS technology. In: Proceedings of IEEE International Conference on Nanotechnology, Portland, 2011. 720–723

    Google Scholar 

  2. Cao J, Xu J Y, Wang Y, et al. A compact SCR model using advanced BJT models and standard SPICE elements. Sci China Inf Sci, 2016, 59: 109302

    Article  Google Scholar 

  3. Yin L, Shen L, Jiang H, et al. Impact of self-heating effects on nanoscale Ge p-channel FinFETs with Si substrate. Sci China Inf Sci, 2018, 61: 062401

    Article  Google Scholar 

  4. Yang C, Luo X, Deng S, et al. High-voltage trench-gate hole-gas enhancement-mode HEMT with multi-conduction channels. Sci China Inf Sci, 2018, 61: 062402

    Article  Google Scholar 

  5. Zhou Q, Han Y, Zhang S F, et al. A low power V-band LC VCO with high Q varactor technique in 40 nm CMOS process. Sci China Inf Sci, 2017, 60: 089401

    Article  Google Scholar 

  6. Ma F, Han Y, Dong S R, et al. Improved low-voltage-triggered SCR structure for RF-ESD protection. IEEE Electron Device Lett, 2013, 34: 1050–1052

    Article  Google Scholar 

  7. Lin C Y, Ker M D, Meng G X. Low-capacitance and fast turn-on SCR for RF ESD protection. IEICE Trans Electron, 2008, E91C: 1321–1330

    Article  Google Scholar 

  8. Song B, Han Y, Dong S R, et al. Compact MOS-triggered SCR with faster turn-on speed for ESD protection. Microelectron Reliab, 2010, 50: 1393–1397

    Article  Google Scholar 

  9. Chen W Y, Rosenbaum E, Ker M D. Diode-triggered silicon-controlled rectifier with reduced voltage overshoot for CDM ESD protection. IEEE Trans Device Mater Relib, 2012, 12: 10–14

    Article  Google Scholar 

  10. Zhang P, Wang Y, Zhang X, et al. Novel silicon-controlled rectifier (SCR) for digital and high-voltage ESD power supply clamp. Sci China Inf Sci, 2014, 57: 029401

    Google Scholar 

  11. Li J J, Sarro J D, Li Y, et al. Investigation of SOI SCR triggering and current sustaining under DC and TLP conditions. In: Proceedings of Electrical Overstress/Electrostatic Discharge Symposium, Las Vegas, 2013. 1–6

    Google Scholar 

  12. Zhang L Z, Wang Y, He Y D. Structure-dependent behaviors of diode-triggered silicon controlled rectifier under electrostatic discharge stress. Chin Phys B, 2016, 25: 128501

    Article  Google Scholar 

  13. Mishra R, Li J J, Sarro J D, et al. Effect of embedded-SiGe (eSiGe) on ESD TLP and VFTLP characteristics of diode-triggered silicon controlled rectifiers (DTSCRs). In: Proceedings of Electrical Overstress/Electrostatic Discharge Symposium, Tucson, 2012. 1–5

    Google Scholar 

  14. Ginawi A, Xia T, Gauthier R. Reducing the turn-on time and overshoot voltage for a diode-triggered silicon-controlled rectifier during an electrostatic discharge event. In: Proceedings of IEEE International System-on-chip Conference, Las Vegas, 2014. 109–114

    Google Scholar 

  15. Mergens M P J, Russ C C, Verhaege K G, et al. Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies. IEEE Trans Device Mater Relib, 2005, 5: 532–542

    Article  Google Scholar 

  16. Sarro J D, Chatty K, Gauthier R, et al. Study of design factors affecting turn-on time of silicon controlled rectifiers (SCRS) in 90 and 65 nm bulk CMOS technologies. In: Proceedings of IEEE Reliability Physics Symposium, Phoenix, 2006. 163–168

    Google Scholar 

  17. Brennan C J, Chang S H, Woo M, et al. Implementation of diode and bipolar triggered SCRs for CDM robust ESD protection in 90 nm CMOS ASICs. Microelectron Reliab, 2007, 47: 1030–1035

    Article  Google Scholar 

  18. Gauthier R, Abou-Khalil M, Chatty K, et al. Investigation of voltage overshoots in diode triggered silicon controlled rectifiers (DTSCRs) under very fast transmission line pulsing (VFTLP). In: Proceedings of Electrical Overstress/ Electrostatic Discharge Symposium, Anaheim, 2009. 1–10

    Google Scholar 

  19. Miao M, Dong S R, Wu J, et al. Minimizing multiple triggering effect in diode-triggered silicon-controlled rectifiers for ESD protection applications. IEEE Electron Device Lett, 2012, 33: 893–895

    Article  Google Scholar 

  20. Shrivastava M, Baghini M S, Sharma D K, et al. A novel bottom spacer FinFET structure for improved short-channel, power-delay, and thermal performance. IEEE Trans Electron Dev, 2010, 57: 1287–1294

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61774005) and Beijing Natural Science Foundation (Grant No. 4162030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, Y., Wang, Y. et al. Improved turn-on behavior in a diode-triggered silicon-controlled rectifier for high-speed electrostatic discharge protection. Sci. China Inf. Sci. 62, 62402 (2019). https://doi.org/10.1007/s11432-017-9427-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9427-1

Keywords

Navigation