Skip to main content
Log in

Review on flexible photonics/electronics integrated devices and fabrication strategy

  • Review
  • Special Focus on Flexible Electronics Technology
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In recent years, to meet the greater demand for next generation electronic devices that are transplantable, lightweight and portable, flexible and large-scale integrated electronics attract much more attention have been of interest in both industry and academia. Organic electronics and stretchable inorganic electronics are the two major branches of flexible electronics. With the semiconductive and flexible properties of the organic semiconductor materials, flexible organic electronics have become a mainstay of our technology. Compared to organic electronics, stretchable and flexible inorganic electronics are fabricated via mechanical design with inorganic electronic components on flexible substrates, which have stretchability and flexibility to enable very large deformations without degradation of performance. This review summarizes the recent progress on fabrication strategies, such as hydrodynamic organic nanowire printing and inkjet-assisted nanotransfer printing of flexible organic electronics, and screen printing, soft lithography and transfer printing of flexible inorganic electronics. In addition, this review considers large-scale organic and inorganic flexible electronic systems and the future applications of flexible and stretchable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zardetto V, Brown T M, Reale A, et al. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci B Polym Phys, 2011, 49: 638–648

    Article  Google Scholar 

  2. Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA, 2004, 101: 9966–9970

    Article  Google Scholar 

  3. Yoon J, Baca A J, Park S I, et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater, 2008, 7: 907–915

    Article  Google Scholar 

  4. Ahn J H, Kim H S, Lee K J, et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science, 2006, 314: 1754–1757

    Article  Google Scholar 

  5. Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499: 458–463

    Article  Google Scholar 

  6. Someya T, Bao Z, Malliaras G G. The rise of plastic bioelectronics. Nature, 2016, 540: 379–385

    Article  Google Scholar 

  7. Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333: 838–843

    Article  Google Scholar 

  8. Park S I, Ahn J H, Feng X, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Funct Mater, 2008, 18: 2673–2684

    Article  Google Scholar 

  9. Feng X, Yang B D, Liu Y, et al. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano, 2011, 5: 3326–3332

    Article  Google Scholar 

  10. Wang Y, Chen Y, Li H, et al. Buckling-based method for measuring the strain-photonic coupling effect of GaAs nanoribbons. ACS Nano, 2016, 10: 8199–8206

    Article  Google Scholar 

  11. Imani S, Bandodkar A J, Mohan A V, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat Commun, 2016, 7: 11650

    Article  Google Scholar 

  12. Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013, 4: 1859

    Article  Google Scholar 

  13. Gao W, Emaminejad S, Nyein H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529: 509–514

    Article  Google Scholar 

  14. Lee H, Choi T K, Lee Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotech, 2016, 11: 566–572

    Article  Google Scholar 

  15. Koh A, Kang D, Xue Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Transl Medicine, 2016, 8: 165

    Article  Google Scholar 

  16. Li H, Xu Y, Li X, et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Advanced Healthc Mater, 2017, 6: 1601013

    Article  Google Scholar 

  17. Chen Y, Lu S, Zhang S, et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv, 2017, 3: e1701629

    Article  Google Scholar 

  18. Webb R C, Ma Y, Krishnan S, et al. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci Adv, 2015, 1: e1500701–e1500701

    Article  Google Scholar 

  19. Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin. Sci Adv, 2016, 2: e1501856–e1501856

    Article  Google Scholar 

  20. Jang K I, Han S Y, Xu S, et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun, 2014, 5: 4779

    Article  Google Scholar 

  21. Lee C H, Ma Y, Jang K I, et al. Soft core/shell packages for stretchable electronics. Adv Funct Mater, 2015, 25: 3698–3704

    Article  Google Scholar 

  22. Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater, 2009, 8: 494–499

    Article  Google Scholar 

  23. Chen J L, Liu C T. Technology advances in flexible displays and substrates. IEEE Access, 2013, 1: 150–158

    Article  Google Scholar 

  24. Kim S, Kwon H J, Lee S, et al. Low-power flexible organic light-emitting diode display device. Adv Mater, 2011, 23: 3511–3516

    Article  Google Scholar 

  25. Rogers J A, Bao Z, Baldwin K, et al. From the cover: paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA, 2001, 98: 4835–4840

    Article  Google Scholar 

  26. Kim D H, Lu N, Ghaffari R, et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater, 2011, 10: 316–323

    Article  Google Scholar 

  27. Lee C H, Kim H, Harburg D V, et al. Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Mater, 2015, 7: e227

    Article  Google Scholar 

  28. Briseno A L, Tseng R J, Ling M M, et al. High-performance organic single-crystal transistors on flexible substrates. Adv Mater, 2006, 18: 2320–2324

    Article  Google Scholar 

  29. Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311: 208–212

    Article  Google Scholar 

  30. Reuss R H, Chalamala B R, Moussessian A, et al. Macroelectronics: perspectives on technology and applications. Proc IEEE, 2005, 93: 1239–1256

    Article  Google Scholar 

  31. Chiang C K, Fincher Jr C, Park Y W, et al. Electrical conductivity in doped polyacetylene. Phys Rev Lett, 1977, 39: 1098–1101

    Article  Google Scholar 

  32. Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett, 1986, 49: 1210–1212

    Article  Google Scholar 

  33. Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428: 911–918

    Article  Google Scholar 

  34. Tee B C K, Chortos A, Berndt A, et al. A skin-inspired organic digital mechanoreceptor. Science, 2015, 350: 313–316

    Article  Google Scholar 

  35. Park K S, Baek J, Park Y, et al. Inkjet-assisted nanotransfer printing for large-scale integrated nanopatterns of various single-crystal organic materials. Adv Mater, 2016, 28: 2874–2880

    Article  Google Scholar 

  36. Kumagai S, Murakami H, Tsuzuku K, et al. Solution-processed organic-inorganic hybrid CMOS inverter exhibiting a high gain reaching 890. Org Electron, 2017, 48: 127–131

    Article  Google Scholar 

  37. Sun Y, Choi W M, Jiang H, et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotech, 2006, 1: 201–207

    Article  Google Scholar 

  38. Kim J, Banks A, Cheng H, et al. Epidermal electronics with advanced capabilities in near-field communication. Small, 2015, 11: 906–912

    Article  Google Scholar 

  39. Xu B, Akhtar A, Liu Y, et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv Mater, 2016, 28: 4462–4471

    Article  Google Scholar 

  40. Xu R, Lee J W, Pan T, et al. Designing thin, ultrastretchable electronics with stacked circuits and elastomeric encapsulation materials. Adv Funct Mater, 2017, 27: 1604545

    Article  Google Scholar 

  41. Tang C W, VanSlyke S A. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51: 913–915

    Article  Google Scholar 

  42. Hoofman R J O M, de Haas M P, Siebbeles L D A, et al. Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene). Nature, 1998, 392: 54–56

    Article  Google Scholar 

  43. Afzali A, Dimitrakopoulos C D, Breen T L. High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. J Am Chem Soc, 2002, 124: 8812–8813

    Article  Google Scholar 

  44. Horowitz G, Peng X Z, Fichou D, et al. Role of the semiconductor/insulator interface in the characteristics of-conjugated-oligomer-based thin-film transistors. Synth Met, 1992, 51: 419–424

    Article  Google Scholar 

  45. Kawasaki N, Kalb W L, Mathis T, et al. Flexible picene thin film field-effect transistors with parylene gate dielectric and their physical properties. Appl Phys Lett, 2010, 96: 113305

    Article  Google Scholar 

  46. Park Y, Han K S, Lee B H, et al. High performance n-type organic-inorganic nanohybrid semiconductors for flexible electronic devices. Org Electron, 2011, 12: 348–352

    Article  Google Scholar 

  47. Gburek B, Wagner V. Influence of the semiconductor thickness on the charge carrier mobility in P3HT organic field-effect transistors in top-gate architecture on flexible substrates. Org Electron, 2010, 11: 814–819

    Article  Google Scholar 

  48. Uno M, Nakayama K, Soeda J, et al. High-speed flexible organic field-effect transistors with a 3D structure. Adv Mater, 2011, 23: 3047–3051

    Article  Google Scholar 

  49. Min S Y, Kim T S, Kim B J, et al. Large-scale organic nanowire lithography and electronics. Nat Commun, 2013, 4: 1773

    Article  Google Scholar 

  50. Ahn J H, Kim H S, Menard E, et al. Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl Phys Lett, 2007, 90: 213501

    Article  Google Scholar 

  51. Kim D H, Song J, Choi W M, et al. From the cover: materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 2008, 105: 18675–18680

    Article  Google Scholar 

  52. Ko H C, Shin G, Wang S, et al. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small, 2009, 5: 2703–2709

    Article  Google Scholar 

  53. Kim D H, Xiao J, Song J, et al. Stretchable, curvilinear electronics based on inorganic materials. Adv Mater, 2010, 22: 2108–2124

    Article  Google Scholar 

  54. Ma Y, Feng X, Rogers J A, et al. Design and application of ‘J-shaped’ stress-strain behavior in stretchable electronics: a review. Lab Chip, 2017, 17: 1689–1704

    Article  Google Scholar 

  55. Meitl M A, Zhu Z T, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 2006, 5: 33–38

    Article  Google Scholar 

  56. Baca A J, Ahn J H, Sun Y, et al. Semiconductor wires and ribbons for high-performance flexible electronics. Angew Chem Int Ed, 2008, 47: 5524–5542

    Article  Google Scholar 

  57. Feng X, Meitl M A, Bowen A M, et al. Competing fracture in kinetically controlled transfer printing. Langmuir, 2007, 23: 12555–12560

    Article  Google Scholar 

  58. Kim S, Wu J, Carlson A, et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci USA, 2010, 107: 17095–17100

    Article  Google Scholar 

  59. Huang Y, Zheng N, Cheng Z, et al. Direct laser writing-based programmable transfer printing via bioinspired shape memory reversible adhesive. ACS Appl Mater Interfaces, 2016, 8: 35628–35633

    Article  Google Scholar 

  60. Chen H, Feng X, Huang Y, et al. Experiments and viscoelastic analysis of peel test with patterned strips for applications to transfer printing. J Mech Phys Solids, 2013, 61: 1737–1752

    Article  Google Scholar 

  61. Cai S, Zhang C, Li H, et al. Surface evolution and stability transition of silicon wafer subjected to nano-diamond grinding. AIP Adv, 2017, 7: 035221

    Article  Google Scholar 

  62. Thorsen T, Maerkl S J, Quake S R. Microfluidic large-scale integration. Science, 2002, 298: 580–584

    Article  Google Scholar 

  63. Zhang L, Di C-a, Yu G, et al. Solution processed organic field-effect transistors and their application in printed logic circuits. J Mater Chem, 2010, 20: 7059–7073

    Article  Google Scholar 

  64. Mishra A, Bäuerle P. Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed, 2012, 51: 2020–2067

    Article  Google Scholar 

  65. Lin P, Yan F. Organic thin-film transistors for chemical and biological sensing. Adv Mater, 2012, 24: 34–51

    Article  Google Scholar 

  66. Wang C H, Hsieh C Y, Hwang J C. Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv Mater, 2011, 23: 1630–1634

    Article  Google Scholar 

  67. Bettinger C J, Becerril H A, Kim D H, et al. Microfluidic arrays for rapid characterization of organic thin-film transistor performance. Adv Mater, 2011, 23: 1257–1261

    Article  Google Scholar 

  68. Knopfmacher O, Hammock M L, Appleton A L, et al. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat Commun, 2014, 5: 2954

    Article  Google Scholar 

  69. Pandey M, Pandey S S, Nagamatsu S, et al. Solvent driven performance in thin floating-films of PBTTT for organic field effect transistor: role of macroscopic orientation. Org Electron, 2017, 43: 240–246

    Article  Google Scholar 

  70. Soeda J, Matsui H, Okamoto T, et al. Highly oriented polymer semiconductor films compressed at the surface of ionic liquids for high-performance polymeric organic field-effect transistors. Adv Mater, 2014, 26: 6430–6435

    Article  Google Scholar 

  71. McCulloch I, Heeney M, Bailey C, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater, 2006, 5: 328–333

    Article  Google Scholar 

  72. Park J U, Hardy M, Kang S J, et al. High-resolution electrohydrodynamic jet printing. Nat Mater, 2007, 6: 782–789

    Article  Google Scholar 

  73. Lee S, Moon G D, Jeong U. Continuous production of uniform poly(3-hexylthiophene) (P3HT) nanofibers by electrospinning and their electrical properties. J Mater Chem, 2009, 19: 743–748

    Article  Google Scholar 

  74. Liu H, Reccius C H, Craighead H G. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Appl Phys Lett, 2005, 87: 253106

    Article  Google Scholar 

  75. Singh M, Haverinen H M, Dhagat P, et al. Inkjet printing-process and its applications. Adv Mater, 2010, 22: 673–685

    Article  Google Scholar 

  76. Hwang J K, Cho S, Dang J M, et al. Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding. Nat Nanotech, 2010, 5: 742–748

    Article  Google Scholar 

  77. Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv Mater, 2016, 28: 5986–5996

    Article  Google Scholar 

  78. Moonen P F, Yakimets I, Huskens J. Fabrication of transistors on flexible substrates: from mass-printing to highresolution alternative lithography strategies. Adv Mater, 2012, 24: 5526–5541

    Article  Google Scholar 

  79. Kwon S, Kim W, Kim H C, et al. P-148: polymer light-emitting diodes using the dip coating method on flexible fiber substrates for wearable displays. SID Symposium Digest Technical Papers, 2015, 46: 1753–1755

    Article  Google Scholar 

  80. Søndergaard R, Hösel M, Angmo D, et al. Roll-to-roll fabrication of polymer solar cells. Mater Today, 2012, 15: 36–49

    Article  Google Scholar 

  81. Hyun W J, Secor E B, Hersam M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater, 2015, 27: 109–115

    Article  Google Scholar 

  82. Krebs F C, Alstrup J, Spanggaard H, et al. Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol Energy Mater Sol Cells, 2004, 83: 293–300

    Article  Google Scholar 

  83. Qin D, Xia Y, Whitesides G M. Soft lithography for micro- and nanoscale patterning. Nat Protoc, 2010, 5: 491–502

    Article  Google Scholar 

  84. Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl Phys Lett, 1993, 63: 2002–2004

    Article  Google Scholar 

  85. Xia Y, McClelland J J, Gupta R, et al. Replica molding using polymeric materials: a practical step toward nanomanufacturing. Adv Mater, 1997, 9: 147–149

    Article  Google Scholar 

  86. Zhao X M, Xia Y, Whitesides G M. Fabrication of three-dimensional micro-structures: microtransfer molding. Adv Mater, 1996, 8: 837–840

    Article  Google Scholar 

  87. Perl A, Reinhoudt D N, Huskens J. Microcontact printing: limitations and achievements. Adv Mater, 2009, 21: 2257–2268

    Article  Google Scholar 

  88. Kooy N, Rahman N, Mohamed K. Patterning of multi-leveled microstructures on flexible polymer substrate using roll-to-roll ultraviolet nanoimprint lithography. In: Prcoeedings of the 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT), Ipoh, 2012. 1–5

    Google Scholar 

  89. Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett, 1995, 67: 3114–3116

    Article  Google Scholar 

  90. Haisma J, Verheijen M, Heuvel K V D, et al. Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B, 1996, 14: 4124–4128

    Article  Google Scholar 

  91. Ahn S H, Guo L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano, 2009, 3: 2304–2310

    Article  Google Scholar 

  92. Meitl M A, Zhu Z T, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 2005, 5: 33–38

    Article  Google Scholar 

  93. Menard E, Meitl M A, Sun Y G, et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev, 2007, 107: 1117–1160

    Article  Google Scholar 

  94. Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes–the route toward applications. Science, 2002, 297: 787–792

    Article  Google Scholar 

  95. Björk P, Holmström S, Inganäs O. Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer. Small, 2006, 2: 1068–1074

    Article  Google Scholar 

  96. Smythe E J, Dickey M D, Whitesides G M, et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano, 2009, 3: 59–65

    Article  Google Scholar 

  97. Lu BW, Chen Y, Ou D P, et al. Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy. Sci Rep, 2015, 5: 16065

    Article  Google Scholar 

  98. Dagdeviren C, Yang B D, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA, 2014, 111: 1927–1932

    Article  Google Scholar 

  99. Park S I, Xiong Y, Kim R H, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science, 2009, 325: 977–981

    Article  Google Scholar 

  100. Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320: 507–511

    Article  Google Scholar 

  101. Saeidpourazar R, Li R, Li Y, et al. Laser-driven micro transfer placement of prefabricated microstructures. J Microelectromech Syst, 2012, 21: 1049–1058

    Article  Google Scholar 

  102. Eisenhaure J D, Sang I R, Al-Okaily A A M, et al. The use of shape memory polymers for microassembly by transfer printing. J Microelectromech Syst, 2014, 23: 1012–1014

    Article  Google Scholar 

  103. Reese C, Roberts M, Ling M M, et al. Organic thin film transistors. Mater Today, 2004, 7: 20–27

    Article  Google Scholar 

  104. Bettinger C J, Bao Z. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater, 2010, 22: 651–655

    Article  Google Scholar 

  105. Klauk H, Halik M, Zschieschang U, et al. Flexible organic complementary circuits. IEEE Trans Electron Devices, 2005, 52: 618–622

    Article  Google Scholar 

  106. Jung Y H, Chang T H, Zhang H, et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun, 2015, 6: 7170

    Article  Google Scholar 

  107. Grimsdale A C, Leok Chan K, Martin R E, et al. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev, 2009, 109: 897–1091

    Article  Google Scholar 

  108. Roberts M E, Sokolov A N, Bao Z. Material and device considerations for organic thin-film transistor sensors. J Mater Chem, 2009, 19: 3351–3363

    Article  Google Scholar 

  109. Thompson B C, Fréchet J M J. Polymer-fullerene composite solar cells. Angew Chem Int Ed, 2008, 47: 58–77

    Article  Google Scholar 

  110. Zhou L, Wanga A, Wu S C, et al. All-organic active matrix flexible display. Appl Phys Lett, 2006, 88: 083502

    Article  Google Scholar 

  111. Mei J, Kim D H, Ayzner A L, et al. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J Am Chem Soc, 2011, 133: 20130–20133

    Article  Google Scholar 

  112. Sun S, Lan L, Xiao P, et al. Flexible organic field-effect transistors with high-reliability gate insulators prepared by a room-temperature, electrochemical-oxidation process. RSC Adv, 2015, 5: 15695–15699

    Article  Google Scholar 

  113. Lee B H, Hsu B B, Patel S N, et al. Flexible organic transistors with controlled nanomorphology. Nano Lett, 2015, 16: 314–319

    Article  Google Scholar 

  114. Kelley T W, Muyres D V, Baude P F, et al. High performance organic thin film transistors. MRS Online Proceedings Library Archive, 2003, 771: 169–179

    Google Scholar 

  115. Fukuda K, Takeda Y, Yoshimura Y, et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat Commun, 2014, 5: 4147

    Google Scholar 

  116. Mannsfeld S C B, Tee B C K, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9: 859–864

    Article  Google Scholar 

  117. Tee B C K, Chortos A, Dunn R R, et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv Funct Mater, 2014, 24: 5427–5434

    Article  Google Scholar 

  118. Sekitani T, Yokota T, Zschieschang U, et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science, 2009, 326: 1516–1519

    Article  Google Scholar 

  119. Liang J, Li L, Pei Q, et al. A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes. Sci Rep, 2014, 4: 4307

    Google Scholar 

  120. Kim W, Kwon S, Lee S M, et al. Soft fabric-based flexible organic light-emitting diodes. Org Electron Phys Mater Appl, 2013, 14: 3007–3013

    Google Scholar 

  121. Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photon, 2012, 6: 105–110

    Article  Google Scholar 

  122. Suzuki M, Fukagawa H, Nakajima Y, et al. A 5.8–in. phosphorescent color AMOLED display fabricated by ink-jet printing on plastic substrate. J Soc Inf Display, 2012, 17: 1037–1042

    Article  Google Scholar 

  123. Madaria A R, Kumar A, Ishikawa F N, et al. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res, 2010, 3: 564–573

    Article  Google Scholar 

  124. Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454: 748–753

    Article  Google Scholar 

  125. Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9: 511–517

    Article  Google Scholar 

  126. Yeo W H, Kim Y S, Lee J, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater, 2013, 25: 2773–2778

    Article  Google Scholar 

  127. Hattori Y, Falgout L, Lee W, et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv Healthcare Mater, 2014, 3: 1597–1607

    Article  Google Scholar 

  128. Huang X, Liu Y, Cheng H, et al. Materials and designs for wireless epidermal sensors of hydration and strain. Adv Funct Mater, 2014, 24: 3846–3854

    Article  Google Scholar 

  129. Chen Y, Lu B, Chen Y, et al. Biocompatible and ultra-flexible inorganic strain sensors attached to skin for long-term vital signs monitoring. IEEE Electron Device Lett, 2016, 37: 496–499

    Article  Google Scholar 

  130. Chen Y, Lu B, Chen Y, et al. Breathable and stretchable temperature sensors inspired by skin. Sci Rep, 2015, 5: 11505

    Article  Google Scholar 

  131. Liu Y, Norton J J S, Qazi R, et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci Adv, 2016, 2: e1601185–e1601185

    Article  Google Scholar 

  132. Hu X, Krull P, de Graff B, et al. Stretchable inorganic-semiconductor electronic systems. Adv Mater, 2011, 23: 2933–2936

    Article  Google Scholar 

  133. Xu J, Shen G. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy, 2015, 13: 131–139

    Article  Google Scholar 

  134. Gao L, Zhang Y, Malyarchuk V, et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun, 2014, 5: 4938

    Article  Google Scholar 

  135. Yu C, Li Y, Zhang X, et al. Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc Natl Acad Sci USA, 2014, 111: 12998–13003

    Article  Google Scholar 

  136. Shin G, Gomez A M, Al-Hasani R, et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron, 2017, 93: 509–521.e3

    Article  Google Scholar 

  137. Xu L, Gutbrod S R, Bonifas A P, et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun, 2014, 5: 3329

    Google Scholar 

  138. Son D, Koo J H, Song J K, et al. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics. ACS Nano, 2015, 9: 5585–5593

    Article  Google Scholar 

  139. Fang H, Yu K J, Gloschat C, et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat Biomed Eng, 2017, 1: 0038

    Article  Google Scholar 

  140. Jang K I, Li K, Chung H U, et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun, 2017, 8: 15894

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (973) (Grant No. 2015CB351904) and National Natural Science Foundation of China (Grant Nos. 11625207, 11320101001, 11227801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Han, Z., Wang, F. et al. Review on flexible photonics/electronics integrated devices and fabrication strategy. Sci. China Inf. Sci. 61, 060410 (2018). https://doi.org/10.1007/s11432-018-9442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-018-9442-3

Keywords

Navigation