Skip to main content
Log in

Simulation of a high-performance enhancement-mode HFET with back-to-back graded AlGaN layers

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A novel three-dimensional hole gas (3DHG) enhancement-mode (E-mode) heterostructure fieldeffect transistor (HFET) is proposed and investigated. It features back-to-back graded AlGaN (BGA) barrier layers consisting of a positive-graded AlGaN layer and a negative-graded AlGaN layer, which form polarization gradient and subsequently induce the three-dimensional electron gas (3DEG) and 3DHG in the positiveand negative-graded AlGaN layers, respectively. The source and drain are located at the same side of the metal-insulator-semiconductor (MIS) trench gate, and the source is in contact with the HfO2 gate insulator. First, the on-state current is significantly improved owing to the high-density 3DEG in the positive-graded AlGaN. Next, the vertical conductive channel between the source and 3DEG is blocked by the 3DHG, thereby realizing the E-mode. The threshold voltage (Vth) can be modulated by a partial doping conductive channel. Subsequently, a high breakdown voltage (BV) is obtained, because the polarization junction formed by the polarization charges assists in depleting the drift region in the off-state. Next, the BGA-HFET is smaller than the conventional HFET (Con-HFET) owing to the special location of the source. The BV of the proposed HFET sharply increases to 919 V from 39 V of the Con-HFET with the same gate-drain spacing, and the saturation drain current is increased by 103.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chow T P, Tyagi R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans Electron Dev, 1994, 41: 1481–1483

    Article  Google Scholar 

  2. Mishra U K, Parikh P, Wu Y-F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc IEEE, 2002, 90: 1022–1031

    Article  Google Scholar 

  3. Micovic M, Kurdoghlian A, Hashimoto P, et al. GaN HFET for W-band power applications. In: Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, 2006. 425–427

    Google Scholar 

  4. Zhou Q, Chen W J, Liu S H, et al. Schottky-contact technology in InAlN/GaN HEMTs for breakdown voltage improvement. IEEE Trans Electron Dev, 2013, 60: 1075–1081

    Article  Google Scholar 

  5. Ambacher O, Smart J, Shealy J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J Appl Phys, 1999, 85: 3222–3233

    Article  Google Scholar 

  6. Ohmaki Y, Tanimoto M, Akamatsu S, et al. Enhancement-mode AlGaN/AlN/GaN high electron mobility transistor with low on-state resistance and high breakdown voltage. Jpn J Appl Phys, 2006, 45: L1168–L1170

    Article  Google Scholar 

  7. Saito W, Takada Y, Kuraguchi M, et al. Recessed-gate structure approach toward normally off high-voltage Al- GaN/GaN HEMT for power electronics applications. IEEE Trans Electron Dev, 2006, 53: 356–362

    Article  Google Scholar 

  8. Uemoto Y, Hikita M, Ueno H, et al. A normally-off AlGaN/GaN transistor with RonA=2.6 m cm2 and BVds=640 V using conductivity modulation. In: Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, 2006. 1–4

    Google Scholar 

  9. Cai Y, Zhou Y G, Chen K J, et al. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Dev Lett, 2005, 26: 435–437

    Article  Google Scholar 

  10. Xiong J Y, Yang C, Wei J, et al. Novel high voltage RESURF AlGaN/GaN HEMT with charged buffer layer. Sci China Inf Sci, 2016, 59: 042410

    Article  Google Scholar 

  11. Kim K W, Jung S D, Kim D S, et al. Effects of TMAH treatment on device performance of normally off Al2O3/GaN MOSFET. IEEE Electron Dev Lett, 2011, 32: 1376–1378

    Article  Google Scholar 

  12. Saito W, Omura I, Ogura T, et al. Theoretical limit estimation of lateral wide band-gap semiconductor power-switching device. Solid-State Electron, 2004, 48: 1555–1562

    Article  Google Scholar 

  13. Lee J G, Lee H J, Cha H Y, et al. Field plated AlGaN/GaN-on-Si HEMTs for high voltage switching applications. J Korean Phy Soc, 2011, 59: 2297–2300

    Article  Google Scholar 

  14. Karmalkar S, Deng J Y, Shur M S. RESURF AlGaN/GaN HEMT for high voltage power switching. IEEE Electron Dev Lett, 2001, 22: 373–375

    Article  Google Scholar 

  15. Nakajima A, Sumida Y, Dhyani M H, et al. GaN-based super heterojunction field effect transistors using the polarization junction concept. IEEE Electron Dev Lett, 2011, 32: 542–544

    Article  Google Scholar 

  16. Yang C, Xiong J Y, Wei J, et al. Analytical model and new structure of the enhancement-mode polarization-junction HEMT with vertical conduction channel. Superlattices Microstruct, 2016, 92: 92–99

    Article  Google Scholar 

  17. Jena D, Heikman S, Green D, et al. Realization of wide electron slabs by polarization bulk doping in graded III-V nitride semiconductor alloys. Appl Phys Lett, 2002, 81: 4395–4397

    Article  Google Scholar 

  18. Rajan S, Xing H, DenBaars S, et al. AlGaN/GaN polarization-doped field-effect transistor for microwave power applications. Appl Phys Lett, 2004, 84: 1591–1593

    Article  Google Scholar 

  19. Simon J, Wang A K, Xing H, et al. Carrier transport and confinement in polarization-induced three-dimensional electron slabs: importance of alloy scattering in AlGaN. Appl Phys Lett, 2006, 88: 042109

    Article  Google Scholar 

  20. Simon J, Protasenko V, Lian C X, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327: 60–64

    Article  Google Scholar 

  21. Li S B, Ware M, Wu J, et al. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl Phys Lett, 2012, 101: 122103

    Article  Google Scholar 

  22. Fang Y L, Feng Z H, Yin J Y, et al. AlGaN/GaN polarization-doped field-effect transistors with graded heterostructure. IEEE Trans Electron Dev, 2014, 61: 4084–4089

    Article  Google Scholar 

  23. Zhou X Y, Feng Z H, Fang Y L, et al. Simulation study of GaN-based HFETs with graded AlGaN barrier. Solid-State Electron, 2015, 109: 90–94

    Article  Google Scholar 

  24. Luo X R, Peng F, Yang C, et al. Polarization-doped enhancement mode HEMT. US Patent, US15/623371, 2017-6-14

  25. Appels J A, Vaes H M J. High voltage thin layer device (RESURF devices). In: Proceedings of the International Electron Devices Meeting (IEDM), Washington, 1979. 238–241

    Google Scholar 

  26. Chen X B, Sin J K O. Optimization of the specific on-resistance of the COOLMOS. IEEE Trans Electron Dev, 2001, 48: 344–348

    Article  Google Scholar 

  27. Zhang L, Ding K, Yan J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Appl Phys Lett, 2010, 97: 062103

    Article  Google Scholar 

  28. Li L, Yang L A, Cao R T, et al. Reduction of threading dislocations in N-polar GaN using a pseudomorphicaly grown graded-Al-fraction AlGaN interlayer. J Cryst Growth, 2013, 387: 1–5

    Article  Google Scholar 

  29. Uren M J, Nash K J, Balmer R S, et al. Punch-through in short-channel AlGaN/GaN HFETs. IEEE Trans Electron Dev, 2006, 53: 395–398

    Article  Google Scholar 

  30. Wei J, Jiang H P, Jiang QM, et al. Proposal of a GaN/SiC hybrid field-effect transistor for power switching applications. IEEE Trans Electron Dev, 2016, 63: 2469–2473

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 51677021, 61234006), National Defense Science and Technology Project Foundation of China (Grant No. 1100395), and Fundamental Research Funds for the Central Universities (Grant No. ZYGX2014Z006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, F., Yang, C., Deng, S. et al. Simulation of a high-performance enhancement-mode HFET with back-to-back graded AlGaN layers. Sci. China Inf. Sci. 62, 62403 (2019). https://doi.org/10.1007/s11432-018-9503-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-018-9503-9

Keywords

Navigation