Skip to main content
Log in

Event-triggered hybrid impulsive control for synchronization of memristive neural networks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper is concerned with the complete synchronization of memristive neural networks (MNNs) with time-varying delays. An event-triggered hybrid state feedback and impulsive controller is designed to save the limited system communication resources, and parameter mismatch is considered in the control design process. Based on the Lyapunov functional approach and the comparison principle for impulsive systems, a sufficient synchronization criterion is developed to derive the master MNN and response MNN. Additionally, under the event-triggered mechanism there exists a positive lower bound for inter-execution time, which implies the avoidance of Zeno behavior. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed synchronization design methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chua L. Memristor-the missing circuit element. IEEE Trans Circ Theor, 1971, 18: 507–519

    Article  Google Scholar 

  2. Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80–83

    Article  Google Scholar 

  3. Chua L. Resistance switching memories are memristors. Appl Phys A, 2011, 102: 765–783

    Article  MATH  Google Scholar 

  4. Zhang X-M, Han Q-L, Wang J. Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst, 2018, 29: 5319–5329

    Article  MathSciNet  Google Scholar 

  5. Zhang X-M, Han Q-L, Wang Z D, et al. Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Trans Cybern, 2017, 47: 3184–3194

    Article  Google Scholar 

  6. Zhang X-M, Han Q-L. Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach. Neural Netw, 2014, 54: 57–69

    Article  MATH  Google Scholar 

  7. Zhang R M, Park J H, Zeng D Q, et al. A new method for exponential synchronization of memristive recurrent neural networks. Inf Sci, 2018, 466: 152–169

    Article  MathSciNet  Google Scholar 

  8. Peng X, Wu H Q, Song K, et al. Non-fragile chaotic synchronization for discontinuous neural networks with time-varying delays and random feedback gain uncertainties. Neurocomputing, 2018, 273: 89–100

    Article  Google Scholar 

  9. Fan Y J, Huang X, Li Y X, et al. Aperiodically intermittent control for quasi-synchronization of delayed memristive neural networks: an interval matrix and matrix measure combined method. IEEE Trans Syst Man Cybern Syst, 2019, 49: 2254–2265

    Article  Google Scholar 

  10. Yang Z Y, Luo B, Liu D R, et al. Adaptive synchronization of delayed memristive neural networks with unknown parameters. IEEE Trans Syst Man Cybern Syst, 2019. doi: 10.1109/TSMC.2017.2778092

    Google Scholar 

  11. Hu B, Guan Z-H, Xiong N X, et al. Intelligent impulsive synchronization of nonlinear interconnected neural networks for image protection. IEEE Trans Ind Inf, 2018, 14: 3775–3787

    Article  Google Scholar 

  12. Yang S F, Guo Z Y, Wang J. Global synchronization of multiple recurrent neural networks with time delays via impulsive interactions. IEEE Trans Neural Netw Learn Syst, 2017, 28: 1657–1667

    Article  MathSciNet  Google Scholar 

  13. He W L, Qian F, Lam J, et al. Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: error estimation, optimization and design. Automatica, 2015, 62: 249–262

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang X Y, Peng D X, Lv X X, et al. Recent progress in impulsive control systems. Math Comput Simul, 2019, 155: 244–268

    Article  MathSciNet  Google Scholar 

  15. Zhang B, Deng F Q, Xie S L, et al. Exponential synchronization of stochastic time-delayed memristor-based neural networks via distributed impulsive control. Neurocomputing, 2018, 286: 41–50

    Article  Google Scholar 

  16. Wang H M, Duan S K, Huang T W, et al. Synchronization of memristive delayed neural networks via hybrid impulsive control. Neurocomputing, 2017, 267: 615–623

    Article  Google Scholar 

  17. Yang X S, Cao J D, Qiu J L. pth moment exponential stochastic synchronization of coupled memristor-based neural networks with mixed delays via delayed impulsive control. Neural Netw, 2015, 65: 80–91

    Article  MATH  Google Scholar 

  18. Chandrasekar A, Rakkiyappan R. Impulsive controller design for exponential synchronization of delayed stochastic memristor-based recurrent neural networks. Neurocomputing, 2016, 173: 1348–1355

    Article  Google Scholar 

  19. Zhang L Z, Yang Y Q, Xu X Y. Synchronization analysis for fractional order memristive Cohen-Grossberg neural networks with state feedback and impulsive control. Phys A-Stat Mech Its Appl, 2018, 506: 644–660

    Article  MathSciNet  Google Scholar 

  20. Zhang X-M, Han Q-L, Zhang B L. An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans Ind Inf, 2017, 13: 4–16

    Article  Google Scholar 

  21. Ge X H, Han Q-L, Wang Z D. A threshold-parameter-dependent approach to designing distributed event-triggered H consensus filters over sensor networks. IEEE Trans Cybern, 2019, 49: 1148–1159

    Article  Google Scholar 

  22. He W L, Xu B, Han Q-L, et al. Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies. IEEE Trans Cybern, 2019. doi: 10.1109/TCYB.2019.2920093

    Google Scholar 

  23. Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Automat Contr, 2007, 52: 1680–1685

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang X F, Lemmon M D. Self-triggered feedback control systems with finite-gain ℒ2 stability. IEEE Trans Automat Contr, 2009, 54: 452–467

    Article  MathSciNet  MATH  Google Scholar 

  25. Yue D, Tian E G, Han Q-L. A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans Automat Contr, 2013, 58: 475–481

    Article  MathSciNet  MATH  Google Scholar 

  26. Zha L J, Tian E G, Xie X P, et al. Decentralized event-triggered H control for neural networks subject to cyber-attacks. Inf Sci, 2018, 457–458: 141–155

    Article  MathSciNet  Google Scholar 

  27. Wen S P, Zeng Z G, Chen M Z Q, et al. Synchronization of switched neural networks with communication delays via the event-triggered control. IEEE Trans Neural Netw Learn Syst, 2017, 28: 2334–2343

    Article  MathSciNet  Google Scholar 

  28. Senan S, Ali M S, Vadivel R, et al. Decentralized event-triggered synchronization of uncertain Markovian jumping neutral-type neural networks with mixed delays. Neural Netw, 2017, 86: 32–41

    Article  MATH  Google Scholar 

  29. Li Q, Shen B, Wang Z D, et al. Synchronization control for a class of discrete time-delay complex dynamical networks: a dynamic event-triggered approach. IEEE Trans Cybern, 2019, 49: 1979–1986

    Article  Google Scholar 

  30. Guo Z Y, Gong S Q, Wen S P, et al. Event-based synchronization control for memristive neural networks with time-varying delay. IEEE Trans Cybern, 2019, 49: 3268–3277

    Article  Google Scholar 

  31. Zhang W B, Wang Z D, Liu Y R, et al. Event-based state estimation for a class of complex networks with time-varying delays: a comparison principle approach. Phys Lett A, 2017, 381: 10–18

    Article  MathSciNet  Google Scholar 

  32. Liu J L, Xia J L, Cao J, et al. Quantized state estimation for neural networks with cyber attacks and hybrid triggered communication scheme. Neurocomputing, 2018, 291: 35–49

    Article  Google Scholar 

  33. Liu H J, Wang Z D, Shen B, et al. Event-triggered state estimation for delayed stochastic memristive neural networks with missing measurements: the discrete time case. IEEE Trans Neural Netw Learn Syst, 2018, 29: 3726–3737

    Article  MathSciNet  Google Scholar 

  34. Li X D, Song S J, Wu J H. Impulsive control of unstable neural networks with unbounded time-varying delays. Sci China Inf Sci, 2018, 61: 012203

    Article  Google Scholar 

  35. Huang Z K, Cao J D, Raffoul Y N. Hilger-type impulsive differential inequality and its application to impulsive synchronization of delayed complex networks on time scales. Sci China Inf Sci, 2018, 61: 078201

    Article  MathSciNet  Google Scholar 

  36. Du W, Leung S Y S, Tang Y, et al. Differential evolution with event-triggered impulsive control. IEEE Trans Cybern, 2017, 47: 244–257

    Article  Google Scholar 

  37. Tan X G, Cao J D, Li X D. Consensus of leader-following multiagent systems: a distributed event-triggered impulsive control strategy. IEEE Trans Cybern, 2019, 49: 792–801

    Article  Google Scholar 

  38. Zhu W, Wang D D, Liu L, et al. Event-based impulsive control of continuous-time dynamic systems and its application to synchronization of memristive neural networks. IEEE Trans Neural Netw Learn Syst, 2018, 29: 3599–3609

    Article  MathSciNet  Google Scholar 

  39. Zhou Y F, Zeng Z G. Event-triggered impulsive control on quasi-synchronization of memristive neural networks with time-varying delays. Neural Netw, 2019, 110: 55–65

    Article  Google Scholar 

  40. Filippov A F. Differential equations with discontinuous righthand sides. Matematicheskii Sbornik. 1960, 93: 99–128

    Google Scholar 

  41. Yan J R, Shen J H. Impulsive stabilization of functional differential equations by Lyapunov-Razumikhin functions. Nonlin Anal-Theor Methods Appl, 1999, 37: 245–255

    Article  MathSciNet  MATH  Google Scholar 

  42. Guan Z-H, Liu Z-W, Feng G, et al. Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control. IEEE Trans Circ Syst I, 2010, 57: 2182–2195

    MathSciNet  Google Scholar 

  43. Ning B D, Han Q-L. Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics. IEEE Trans Automat Contr, 2019, 64: 1686–1693

    Article  MathSciNet  MATH  Google Scholar 

  44. Ning B D, Han Q-L, Zuo Z Y, et al. Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology. IEEE Trans Cybern, 2018, 48: 1577–1590

    Article  Google Scholar 

  45. Ge X H, Han Q-L, Wang Z D. A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans Cybern, 2019, 49: 171–183

    Article  Google Scholar 

  46. Zhang D W, Han Q-L, Zhang X-M. Network-based modeling and proportional-integral control for direct-drive-wheel systems in wireless network environments. IEEE Trans Cybern, 2019. doi: 10.1109/TCYB.2019.2924450

    Google Scholar 

  47. Zhang D W, Han Q-L, Jia X C. Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme. Fuzzy Sets Syst, 2015, 273: 26–48

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61973166) and Fundamental Research Funds for the Central Universities (Grant No. 30919011409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Bao, Y. Event-triggered hybrid impulsive control for synchronization of memristive neural networks. Sci. China Inf. Sci. 63, 150206 (2020). https://doi.org/10.1007/s11432-019-2694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2694-y

Keywords

Navigation