Skip to main content
Log in

Petrography and chronology of lunar meteorite Northwest Africa 6950

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Northwest Africa (NWA) 6950 is an olivine-gabbro lunar meteorite that has a distinctly different petrographic texture from other lunar basalts. In this contribution, we report the petrography, mineralogy, and U-Pb geochronology of baddeleyite and phosphate in this lunar meteorite and make a comparison with other NWA 773 paired meteorites. NWA 6950 consists mainly of coarse-grained olivine, pyroxene, and plagioclase, with minor ilmenite, chromite, troilite, baddeleyite, taenite, and apatite. The abundant rounded to euhedral olivine has a limited Fo ranging from 68 to 69. Pyroxenes include both augite and pigeonite, with a narrow range of Mg#=71–80, and composition, respectively, En46–52Fs12–16Wo32–41 and En58–68Fs19–28Wo7–20. Plagioclase is mainly anhedral, conforming to the crystal margins of olivine and pyroxene. The plagioclase grains are elongated and several hundreds of microns in length. Raman spectra shows that plagioclase has been transformed into maskelynite, which is very calcic (An87–95) with low sodium and very low potassium (Ab4–9Or0.6–3.7). The weighted mean 207Pb/206Pb ages of baddeleyite and phosphate measured using a sensitive high resolution ion micro probe (SHRIMP II) are 3119 ± 16 Ma (n = 9, MSWD = 2.5) (mean squared weighted deviates, MSWD) and 3119 ± 18 Ma (n = 15, MSWD = 2.1), respectively, giving the crystallization age of the meteorite. NWA 6950 has similar mineral compositions, geochemical characteristics, and an almost identical age of crystallization to the magnesian gabbro of the NWA 773 clan. We conclude that NWA 6950 and NWA 773 are paired meteorites, which crystallize at ca. 3119 Ma, and represent magmatic activities in the KREEP (potassium (K), rare earth elements (REE) and phosphorus (P) rich lunar material) region of the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warren P H, Kallemeyn G W. Geochemical investigation of five lunar meteorites: implications for the composition, origin and evolution of the lunar crust. Proc NIPR Symp Antarcti Meteorites, 1991, 4: 91–117

    Google Scholar 

  2. Hsu W, Zhang A, Bartoschewitz R, et al. Petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300. Meteoritics Planet Sci, 2008, 43: 1363–1381

    Article  Google Scholar 

  3. Wang Y, Hsu W, Guan Y, et al. Petrogenesis of the Northwest Africa 4734 basaltic lunar meteorite. GeoChim CosmoChim Acta, 2012, 92: 329–344

    Article  Google Scholar 

  4. Shaulis B J, Righter M, Lapen T J, et al. Baddeleyite chronology of Northwest Africa 6950: A 3.1 Ga lunar olivine gabbro paired with NWA 2977 and the cumulate mare gabbro lithology in NWA 773. In: Proceedings of the 43rd Lunar and Planetary Science Conference, 2012. 2236

  5. Shaulis B J, Righter M, Lapen T J, et al. 3.1 Ga crystallization age for magnesian and ferroan gabbro lithologies in the Northwest Africa 773 clan of lunar meteorites. Geochim Cosmochim Acta, 2017, 213: 435–456

    Article  Google Scholar 

  6. Fagan T J, Taylor G J, Keil K, et al. Northwest Africa 773: lunar origin and iron-enrichment trend. Meteoritics Planet Sci, 2003, 38: 529–554

    Article  Google Scholar 

  7. Bunch T E, Wittke J H, Korotev R L, et al. Lunar meteorites NWA 2700, NWA 2727 and NWA 2977: Mare basalt/gabbro brecciaswith affinities to NWA 773. In: Proceedings of the 37th Lunar and Planetary Science Conference, 2006. 1375

  8. Zeigler R A, Korotev R L, Jolliff B L. Petrography, geochemistry, and pairing relationships of basaltic lunar meteorite stones NWA 773, NWA 2700, NWA 2727, NWA2977, and NWA 3160. In: Proceedings of the 38th Lunar and Planetary Science Conference, 2007. 2109

  9. North S N, Jolliff B L, Korotev R L. Ferroan gabbro and leucogabbro lithologies in NWA 3170, possible petrogenetic link and comparison to NWA 2727. In: Proceedings of the 45th Lunar and Planetary Science Conference, 2014. 2858

  10. Nagaoka H, Karouji Y, Takeda H. Mineralogy and petrology of lunarmeteorite Northwest Africa 2977 consisting of olivine cumulate gabbroincluding inverted pigeonite. Earth Planets Space, 2015, 67: 1–8

    Article  Google Scholar 

  11. Yokoi N, Takenouchi A, Mikouchi T. Iron valencestates of plagioclase in some lunar meteorites. In: Proceedings of the 49th Lunar and Planetary Science Conference, 2018. 2227

  12. Chen J, Jolliff B L, Korotev R L. Northwest Africa 10985: a new lunar gabbro? In: Proceedings of the 50th Lunar and Planetary Science Conference, 2019. 2132

  13. Jolliff B L, Korotev R L, Zeigler R A, et al. Northwest Africa 773: lunar mare breccia with a shallow-formed olivine-cumulate component, inferred very-low-Ti (VLT) heritage, and a KREEP connection. Geochim Cosmochim Acta, 2003, 67: 4857–4879

    Article  Google Scholar 

  14. Papanastassiou D A, Wasserburg G J. Lunar chronology and evolution from RbSr studies of Apollo 11 and 12 samples. Earth Planet Sci Lett, 1971, 11: 37–62

    Article  Google Scholar 

  15. Nyquist L E, Bansal B M, Wooden J, et al. Sr-isotopic constraints on the peterogenesis of Apollo 12 mare basalts. In: Proceedings of the 8th Lunar and Planetary Science Conference, 1977. 1383–1415

  16. OuYang Z. Introduction to Lunar Science (in Chinese). Beijing: Astronautic Publishing House, 2005

    Google Scholar 

  17. Fernandes V A, Burgess R, Turner G. 40Ar-39Ar chronology of lunar meteorites Northwest Africa 032 and 773. Meteoritics Planet Sci, 2003, 38: 555–564

    Article  Google Scholar 

  18. Borg L E, Shearer C K, Asmerom Y, et al. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature, 2004, 432: 209–211

    Article  Google Scholar 

  19. Rankenburg K, Brandon A D, Norman M D. A Rb Sr and Sm Nd isotope geochronology and trace element study of lunar meteorite LaPaz Icefield 02205. Geochim Cosmochim Acta, 2007, 71: 2120–2135

    Article  Google Scholar 

  20. Shearer C K, Borg L E, Papike J J. A view of KREEP-rich lunar basaltic magmatism through the eyes of NWA 773. In: Proceedings of the 36th Lunar and Planetary Science Conference, 2005. 1191

  21. Fagan T J, Kashima D, Wakabayashi Y, et al. Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite. Geochim Cosmochim Acta, 2014, 133: 97–127

    Article  Google Scholar 

  22. Fagan T J, Nagaoka H. Northwest Africa 773 clan olivinecumulate gabbros: Crystallization trends compared with a gabbroic sill from Murotomisaki. In: Proceedings of the 80th Annual Meeting of the Meteoritical Society, 2017. 6082

  23. Kayama M, Tomioka N, Ohtani E, et al. Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith. Sci Adv, 2018, 4: 4378

    Article  Google Scholar 

  24. Nyquist L E, Shih C Y, Reese Y D, et al. Sm-Nd and Rb-Sr ages and isotopic systematic for NWA 2977, a young basalt from the PKT. Meteorit Planet Sci, 2009, 44: 159

    Google Scholar 

  25. Zhang A, Hsu W, Floss C, et al. Petrogenesis of lunar meteorite northwest Africa 2977: constraints from in-situ microprobe results. Meteorit Planet Sci, 2011, 45: 1929–1947

    Article  Google Scholar 

  26. Borg L E, Gaffney A M, Shearer C K, et al. Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. Geochim Cosmochim Acta, 2009, 73: 3963–3980

    Article  Google Scholar 

  27. Ruzicka A, Grossman J N, Garvie L. The Meteoritical Bulletin, No. 100, 2014 June. Meteorit Planet Sci, 2014, 49: 1–101

    Article  Google Scholar 

  28. Heaman L M. The application of U-Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem Geol, 2009, 261: 43–52

    Article  Google Scholar 

  29. Williams I S. U-Th-Pb geochronology by ion microprobe. Rev Economic Geology, 1998, 7: 1–35

    Google Scholar 

  30. Li Q L, Li X H, Wu F Y, et al. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb. Gondwana Res, 2012, 21: 745–756

    Article  Google Scholar 

  31. Trotter J A, Eggins S M. Chemical systematics of conodont apatite determined by laser ablation ICPMS. Chem Geol, 2006, 233: 196–216

    Article  Google Scholar 

  32. Nemchin A A, Pidgeon R T, Healy D, et al. The comparative behavior of apatite-zircon U-Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. Meteoritics Planet Sci, 2009, 44: 1717–1734

    Article  Google Scholar 

  33. Sano Y, Oyama T, Terada K, et al. Ion microprobe U-Pb dating of apatite. Chem Geol, 1999, 153: 249–258

    Article  Google Scholar 

  34. Lin Y, Shen W, Liu Y, et al. Very high-K KREEP-rich clasts in the impact melt breccia of the lunar meteorite SaU 169: new constraints on the last residue of the Lunar Magma Ocean. Geochim Cosmochim Acta, 2012, 85: 19–40

    Article  Google Scholar 

  35. Wu Y, Hsu W. Mineral chemistry and in-situ Usbnd Pb geochronology of the mare basalt Northwest Africa 10597: implications for low-Ti mare volcanism around 3.0 Ga. Icarus, 2020, 338: 113531

    Article  Google Scholar 

  36. Burgess R, Fernandes V A, Irving A J, et al. Ar-Ar ages of nwa 2977 and NWA 3160—lunar meteorites paired with NWA 773. In: Proceedings of the 38th Lunar and Planetary Science Conference, 2007. 1603

  37. Valencia S N, Jolliff B L, Korotev R L. Petrography, relationships, and petrogenesis of the gabbroic lithologies in Northwest Africa 773 clan members Northwest Africa 773, 2727, 3160, 3170, 7007, and 10656. Meteorit Planet Sci, 2019, 54: 2083–2115

    Article  Google Scholar 

  38. Jolliff B L, Zeigler R A, Korotev R L. Compositional characteristics and petrogenetic relationships among the NWA 773 clan of lunar meteorites. In: Proceedings of the 38th Lunar and Planetary Science Conference, 2007. 1489

  39. Meyer C. Lunar sample compendium. 2012. http://curator.jsc.nasa.gov/lunar/compendium.cfm

  40. Papanastassiou D A, Wasserburg G J. RbSr ages and initial strontium in basalts from Apollo 15. Earth Planet Sci Lett, 1973, 17: 324–337

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Nature Science Foundation of China (Grant Nos. 41842060, 41803027), China National Space Administration (Grant No. D020205), and China Geological Survey Research Fund (Grant Nos. JYYWF20180104, JYYWF20181702). We thank members of the Beijing SHRIMP Center for their help with SHRIMP analysis and sample imaging. We are also grateful to Prof. John W. VALLEY for his constructive comments for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuruo Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Z., Shi, Y., Anderson, J.L. et al. Petrography and chronology of lunar meteorite Northwest Africa 6950. Sci. China Inf. Sci. 63, 140902 (2020). https://doi.org/10.1007/s11432-019-2809-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2809-3

Keywords

Navigation