Skip to main content
Log in

Distributed H filtering of nonlinear systems with random topology by an event-triggered protocol

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Applying an event-triggered protocol, this paper proposes a distributed H filter design for nonlinear perturbed systems under fading measurements with random topology. Nonlinearities in this system obey the one-sided Lipschitz constraint, which embraces the conventional Lipschitz condition as a special case. The sensor network allows random variations of the interconnection strengths between adjacent nodes, and the connection coefficient is determined as the product of a constant and a stochastic variable with a known probabilistic feature. To reduce the unnecessary data transmission and efficiently use the limited bandwidth, the transmissions are orchestrated by an event-triggered regulating strategy. A stochastic bounded real lemma is established for the resulting error dynamics. Based on the presented matrix decomposition, which removes the direct coupling between the statistical information of interconnection strengths and the filter gain, the distributed H filter gain can be explicitly expressed and easily solved. The usefulness of the theoretical method is demonstrated in a simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuman D I, Nayyar A, Mahajan A, et al. Measurement scheduling for soil moisture sensing: from physical models to optimal control. Proc IEEE, 2010, 98: 1918–1933

    Article  Google Scholar 

  2. Lamont L, Toulgoat M, Déziel M, et al. Tiered wireless sensor network architecture for military surveillance applications. In: Proceedings of the 5th International Conference on Sensor Technologies and Applications, Nice, 2011. 288–295

  3. Ezdiani S, Acharyya I S, Sivakumar S, et al. Wireless sensor network softwarization: towards WSN adaptive QoS. IEEE Int Things J, 2017, 4: 1517–1527

    Article  Google Scholar 

  4. Ge X, Han Q L, Zhang X M, et al. Distributed event-triggered estimation over sensor networks: a survey. IEEE Trans Cybern, 2020, 50: 1306–1320

    Article  Google Scholar 

  5. Chen Y, Chen Z P, Chen Z Y, et al. Observer-based passive control of non-homogeneous Markov jump systems with random communication delays. Int J Syst Sci, 2020, 51: 1133–1147

    Article  MathSciNet  MATH  Google Scholar 

  6. Olfati-Saber R. Distributed Kalman filtering for sensor networks. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, 2008. 5492–5498

  7. Zhang D, Cai W J, Xie L H, et al. Nonfragile distributed filtering for T-S fuzzy systems in sensor networks. IEEE Trans Fuzzy Syst, 2015, 23: 1883–1890

    Article  Google Scholar 

  8. Ding D, Wang Z, Ho D W C, et al. Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica, 2017, 78: 231–240

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma L F, Wang Z D, Lam H K, et al. Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks. IEEE Trans Cybern, 2017, 47: 3772–3783

    Article  Google Scholar 

  10. Alyazidi N M, Mahmoud M S. Distributed H2/H filter design for discrete-time switched systems. IEEE/CAA J Autom Sin, 2020, 7: 158–168

    MathSciNet  Google Scholar 

  11. Chen Y, Wang Z D, Yuan Y, et al. Distributed H filtering for switched stochastic delayed systems over sensor networks with fading measurements. IEEE Trans Cybern, 2020, 50: 2–14

    Article  Google Scholar 

  12. Zhang L X, Gao H J, Kaynak O. Network-induced constraints in networked control systems — a survey. IEEE Trans Ind Inf, 2013, 9: 403–416

    Article  Google Scholar 

  13. Liang J L, Wang Z D, Liu X H. Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Trans Neural Netw, 2011, 22: 486–496

    Article  Google Scholar 

  14. Wang D, Wang Z D, Li G Y, et al. Distributed filtering for switched nonlinear positive systems with missing measurements over sensor networks. IEEE Sens J, 2016, 16: 4940–4948

    Article  Google Scholar 

  15. Li W L, Jia Y M, Du J P. Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise. Digit Signal Process, 2017, 60: 211–219

    Article  Google Scholar 

  16. Chen Y, Chen C, Xue A. Distributed non-fragile l2l filtering over sensor networks with random gain variations and fading measurements. Neurocomputing, 2019, 338: 154–162

    Article  Google Scholar 

  17. Oki E, Jing Z G, Rojas-Cessa R, et al. Concurrent round-robin-based dispatching schemes for Clos-network switches. IEEE/ACM Trans Netw, 2002, 10: 830–844

    Article  Google Scholar 

  18. Xu Y, Lu R Q, Shi P, et al. Finite-time distributed state estimation over sensor networks with round-robin protocol and fading channels. IEEE Trans Cybern, 2018, 48: 336–345

    Article  Google Scholar 

  19. Li J Y, Zhang B, Lu R Q, et al. Distributed H state estimator design for time-delay periodic systems over scheduling sensor networks. IEEE Trans Cybern, 2021, 51: 462–472

    Article  Google Scholar 

  20. Zou L, Wang Z D, Gao H J, et al. Finite-horizon consensus control of time-varying multiagent systems with stochastic communication protocol. IEEE Trans Cybern, 2017, 47: 1830–1840

    Article  Google Scholar 

  21. Wang J H, Song Y. Resilient RMPC for cyber-physical systems with polytopic uncertainties and state saturation under TOD scheduling: an ADT approach. IEEE Trans Ind Inf, 2020, 16: 4900–4908

    Article  Google Scholar 

  22. Zhao Y, He X, Zhou D H. Distributed filtering for time-varying networked systems with sensor gain degradation and energy constraint: a centralized finite-time communication protocol scheme. Sci China Inf Sci, 2018, 61: 092208

    Article  MathSciNet  Google Scholar 

  23. Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Autom Control, 2007, 52: 1680–1685

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma H, Li H Y, Lu R Q, et al. Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances. Sci China Inf Sci, 2020, 63: 150212

    Article  MathSciNet  Google Scholar 

  25. Ma L F, Wang Z D, Han Q L, et al. Consensus control of stochastic multi-agent systems: a survey. Sci China Inf Sci, 2017, 60: 120201

    Article  MathSciNet  Google Scholar 

  26. Xia J W, Li B M, Su S F, et al. Finite-time command filtered event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems. IEEE Trans Fuzzy Syst, 2021, 29: 1815–1825

    Article  Google Scholar 

  27. Yue D, Tian E, Han Q L. A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans Autom Control, 2013, 58: 475–481

    Article  MathSciNet  MATH  Google Scholar 

  28. Xia W F, Zheng W X, Xu S Y. Event-triggered filter design for Markovian jump delay systems with nonlinear perturbation using quantized measurement. Int J Robust Nonlinear Control, 2019, 29: 4644–4664

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu Q Y, Wang Z D, He X, et al. Event-based recursive distributed filtering over wireless sensor networks. IEEE Trans Autom Control, 2015, 60: 2470–2475

    Article  MathSciNet  MATH  Google Scholar 

  30. Su H S, Wang X, Zeng Z G. Consensus of second-order hybrid multiagent systems by event-triggered strategy. IEEE Trans Cybern, 2020, 50: 4648–4657

    Article  Google Scholar 

  31. Xu W Y, Ho D W C, Zhong J, et al. Event/self-triggered control for leader-following consensus over unreliable network with DoS attacks. IEEE Trans Neural Netw Learn Syst, 2019, 30: 3137–3149

    Article  MathSciNet  Google Scholar 

  32. Hu J, Liu G P, Zhang H, et al. On state estimation for nonlinear dynamical networks with random sensor delays and coupling strength under event-based communication mechanism. Inf Sci, 2020, 511: 265–283

    Article  MathSciNet  MATH  Google Scholar 

  33. Khalil H K. Nonlinear Systems. 3rd ed. Englewood Cliffs: Prentice Hall, 2002

    MATH  Google Scholar 

  34. Abbaszadeh M, Marquez H J. Nonlinear observer design for one-sided Lipschitz systems. In: Proceedings of American Control Conference, Baltimore, 2010. 5284–5289

  35. Song J, He S P. Robust finite-time H control for one-sided Lipschitz nonlinear systems via state feedback and output feedback. J Franklin Inst, 2015, 352: 3250–3266

    Article  MathSciNet  MATH  Google Scholar 

  36. Agha R, Rehan M, Ahn C K, et al. Adaptive distributed consensus control of one-sided Lipschitz nonlinear multiagents. IEEE Trans Syst Man Cybern Syst, 2019, 49: 568–578

    Article  Google Scholar 

  37. Yang W, Zhang Y, Chen G R, et al. Distributed filtering under false data injection attacks. Automatica, 2019, 102: 34–44

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen B, Wang Z D, Ding D R, et al. H state estimation for complex networks with uncertain inner coupling and incomplete measurements. IEEE Trans Neural Netw Learn Syst, 2013, 24: 2027–2037

    Article  Google Scholar 

  39. You K Y, Li Z K, Xie L H. Consensus condition for linear multi-agent systems over randomly switching topologies. Automatica, 2013, 49: 3125–3132

    Article  MathSciNet  MATH  Google Scholar 

  40. Ugrinovskii V. Distributed robust estimation over randomly switching networks using H consensus. Automatica, 2013, 49: 160–168

    Article  MathSciNet  MATH  Google Scholar 

  41. Yan H C, Yang Q, Zhang H, et al. Distributed H state estimation for a class of filtering networks with time-varying switching topologies and packet losses. IEEE Trans Syst Man Cybern Syst, 2018, 48: 2047–2057

    Article  Google Scholar 

  42. Zhang Q, Zhang J F. Distributed parameter estimation over unreliable networks with Markovian switching topologies. IEEE Trans Autom Control, 2012, 57: 2545–2560

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu Q Y, Wang Z D, He X, et al. Event-based distributed filtering over Markovian switching topologies. IEEE Trans Autom Control, 2019, 64: 1595–1602

    Article  MathSciNet  MATH  Google Scholar 

  44. He M H, Mu J R, Mu X W. H leader-following consensus of nonlinear multi-agent systems under semi-Markovian switching topologies with partially unknown transition rates. Inf Sci, 2020, 513: 168–179

    Article  MathSciNet  MATH  Google Scholar 

  45. Ma L F, Wang Z D, Liu Y R, et al. Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link noises and switching topology. Int J Robust Nonlinear Control, 2019, 29: 2941–2959

    Article  MathSciNet  MATH  Google Scholar 

  46. Li W L, Jia Y M, Du J P. State estimation for stochastic complex networks with switching topology. IEEE Trans Autom Control, 2017, 62: 6377–6384

    Article  MathSciNet  MATH  Google Scholar 

  47. Bioucas-Dias J M, Figueiredo M A T. Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans Image Process, 2010, 19: 1720–1730

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen Y, Wang Z D, Wang L C, et al. Finite-horizon H state estimation for stochastic coupled networks with random inner couplings using round-robin protocol. IEEE Trans Cybern, 2021, 51: 1204–1215

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported partially by Zhejiang Provincial Natural Science Foundation (Grant No. LR16F0-30003) and partially by National Natural Science Foundation of China (Grant Nos. 61973102, U1509205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renquan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhu, M., Lu, R. et al. Distributed H filtering of nonlinear systems with random topology by an event-triggered protocol. Sci. China Inf. Sci. 64, 202204 (2021). https://doi.org/10.1007/s11432-020-3072-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3072-9

Keywords

Navigation