Skip to main content
Log in

Global modes and coupled modes for integrated twin circular-side octagon microlasers

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Whispering-gallery mode (WGM) microlasers are potential light sources for photonic integrated circuits and optical information processing. In this paper, an integrated twin circular-side octagon microlaser (TCOM) composed of two identical circular-side octagon microcavities (COMs) is proposed and demonstrated for realizing lasing mode control. In a TCOM, we found a global mode with the mode field of an “8” pattern (labeled “8” mode) in addition to weak coupling modes of traditional four-bounce modes. The “8” mode belongs to the whole coupled cavity and is insensitive to the refractive index offset of coupled COMs, but the weak coupling modes are strongly sensitive to the refractive index offset. Lasing mode transformation from multiple coupled modes to a single “8” mode is demonstrated by adjusting the refractive index offset through injection currents. Weak coupling modes for directly connected TCOMs and lasing mode control make the COM a potential unit for large-scale photonic integration and optical information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60: 289–291

    Article  Google Scholar 

  2. Vahala K J. Optical microcavities. Nature, 2003, 424: 839–846

    Article  Google Scholar 

  3. Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev, 2010, 4: 751–779

    Article  Google Scholar 

  4. Cao H, Wiersig J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev Mod Phys, 2015, 87: 61–111

    Article  MathSciNet  Google Scholar 

  5. Yang S C, Wang Y, Sun H D. Advances and prospects for whispering gallery mode microcavities. Adv Opt Mater, 2015, 3: 1136–1162

    Article  Google Scholar 

  6. Kryzhanovskaya N V, Moiseev E I, Zubov F I, et al. Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots. Photon Res, 2019, 7: 664–668

    Article  Google Scholar 

  7. Liu Z, Xu Y, Lin Y, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys Rev Lett, 2019, 123: 253901

    Article  Google Scholar 

  8. Calabrese A, Ramiro-Manzano F, Price H M, et al. Unidirectional reflection from an integrated “taiji” microresonator. Photon Res, 2020, 8: 1333–1341

    Article  Google Scholar 

  9. Jiang X F, Zou C L, Wang L, et al. Whispering-gallery microcavities with unidirectional laser emission. Laser Photonics Rev, 2016, 10: 40–61

    Article  Google Scholar 

  10. Midya B, Zhao H, Qiao X D, et al. Supersymmetric microring laser arrays. Photon Res, 2019, 7: 363–367

    Article  Google Scholar 

  11. Hodaei H, Miri M A, Heinrich M, et al. Parity-time-symmetric microring lasers. Science, 2014, 346: 975–978

    Article  Google Scholar 

  12. Ma X W, Huang Y Z, Yang Y D, et al. Mode and lasing characteristics for hybrid square-rectangular lasers. IEEE J Sel Top Quantum Electron, 2017, 23: 1–9

    Google Scholar 

  13. Huang Y Z, Ma X W, Yang Y D, et al. Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor. Sci China Inf Sci, 2018, 61: 080401

    Article  MathSciNet  Google Scholar 

  14. Hao Y Z, Wang F L, Tang M, et al. Widely tunable single-mode lasers based on a hybrid square/rhombus-rectangular microcavity. Photon Res, 2019, 7: 543–548

    Article  Google Scholar 

  15. Xu C, Hayenga W E, Hodaei H, et al. Enhanced modulation characteristics in broken symmetric coupled microring lasers. Opt Express, 2020, 28: 19608

    Article  Google Scholar 

  16. Xiao Z X, Huang Y Z, Yang Y D, et al. Modulation bandwidth enhancement for coupled twin-square microcavity lasers. Opt Lett, 2017, 42: 3173–3176

    Article  Google Scholar 

  17. Weng H Z, Huang Y Z, Xiao J L, et al. Multicoherence wavelength generation based on integrated twin-microdisk lasers. Opt Lett, 2016, 41: 5146–5149

    Article  Google Scholar 

  18. Zou L X, Liu B W, Lv X M, et al. Integrated semiconductor twin-microdisk laser under mutually optical injection. Appl Phys Lett, 2015, 106: 191107

    Article  Google Scholar 

  19. Kominis Y, Choquette K D, Bountis A, et al. Exceptional points in two dissimilar coupled diode lasers. Appl Phys Lett, 2018, 113: 081103

    Article  Google Scholar 

  20. Coldren L A, Miller B I, Iga K, et al. Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching. Appl Phys Lett, 1981, 38: 315–317

    Article  Google Scholar 

  21. Tsang W T, Olsson N A, Logan R A. High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers. Appl Phys Lett, 1983, 42: 650–652

    Article  Google Scholar 

  22. Ebeling K J, Coldren L A, Miller B I, et al. Single-mode operation of coupled-cavity GaInAsP/InP semiconductor lasers. Appl Phys Lett, 1983, 42: 6–8

    Article  Google Scholar 

  23. Matsuo S, Segawa T. Microring-resonator-based widely tunable lasers. IEEE J Sel Top Quantum Electron, 2009, 15: 545–554

    Article  Google Scholar 

  24. Segawa T, Kobayashi W, Sato T, et al. A flat-output widely tunable laser based on parallel-ring resonator integrated with electroabsorption modulator. Opt Express, 2012, 20: B485

    Article  Google Scholar 

  25. Kuznetsov M, Verlangieri P, Dentai A G. Frequency tuning characteristics and WDM channel access of the semiconductor three-branch Y3-lasers. IEEE Photon Technol Lett, 1994, 6: 157–160

    Article  Google Scholar 

  26. Zhang S, Meng J J, Guo S L, et al. Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning. Opt Express, 2013, 21: 13564–13571

    Article  Google Scholar 

  27. Zhuang Y, Li Q L, Yang Y Q, et al. Transmission distance extension of directly modulated tunable V-cavity laser using AWG wavelength detuning. IEEE Photonics J, 2020, 12: 1–7

    Article  Google Scholar 

  28. Tang M, Yang Y D, Weng H Z, et al. Ray dynamics and wave chaos in circular-side polygonal microcavities. Phys Rev A, 2019, 99: 033814

    Article  Google Scholar 

  29. Bennett B R, Soref R A, Alamo J A D. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J Quantum Electron, 1990, 26: 113–122

    Article  Google Scholar 

  30. Hayat A, Tong J H, Chen C, et al. Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities. Sci China Inf Sci, 2020, 63: 182401

    Article  Google Scholar 

  31. Vollmer F, Yang L. Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 2012, 1: 267–291

    Article  Google Scholar 

  32. Benyoucef M, Shim J B, Wiersig J, et al. Quality-factor enhancement of supermodes in coupled microdisks. Opt Lett, 2011, 36: 1317–1319

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Strategic Priority Research Program, Chinese Academy of Sciences (Grant No. XDB43000000), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC002), and National Natural Science Foundation of China (Grant Nos. 61874113, 61875188, 61935018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Yang, Y., Hao, Y. et al. Global modes and coupled modes for integrated twin circular-side octagon microlasers. Sci. China Inf. Sci. 65, 122403 (2022). https://doi.org/10.1007/s11432-020-3185-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3185-0

Keywords

Navigation