Skip to main content
Log in

Blind adaptive identification and equalization using bias-compensated NLMS methods

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, two new blind adaptive identification and equalization algorithms based on second-order statistics are proposed. We consider a practical case where the noise statistics of each transmission channel is unknown. Resorting to the technique of antennas array, a single-input double-output channel can be obtained. We further convert the problem of blind identification into an errors-in-variables (EIV) parameter estimation problem, then we apply the normalized least-mean squares (NLMS) algorithms to tackle the problem. To improve the performance of the NLMS algorithms, we also develop a variable step-size NLMS (VSS-NLMS) algorithm that ensures the stability of the algorithm and faster convergence speed at the beginning of the iterations process. Under various practical scenarios, noise affects transmission channels; it is necessary to estimate the variance and remove the bias. By modifying the cost function, we present a bias-compensated NLMS (BC-NLMS) algorithm and a bias-compensated NLMS algorithm with variable step-size (BC-VSS-NLMS) to eliminate the bias. The proposed algorithms estimate the variances of the noise online, and therefore, the noise-induced bias can be removed. The estimate of the channel characteristics is available for equalization. Simulation results are presented to demonstrate the performance of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azim A W, Abrar S, Zerguine A, et al. Performance analysis of a family of adaptive blind equalization algorithms for square-QAM. Digital Signal Processing, 2016, 48: 163–177

    Article  MathSciNet  Google Scholar 

  2. Huang Y T, Benesty J. A class of frequency-domain adaptive approaches to blind multichannel identification. IEEE Trans Signal Process, 2003, 51: 11–24

    Article  MathSciNet  MATH  Google Scholar 

  3. Sato Y. A method of self-recovering equalization for multilevel amplitude-modulation systems. IEEE Trans Commun, 1975, 23: 679–682

    Article  Google Scholar 

  4. Godard D. Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans Commun, 1980, 28: 1867–1875

    Article  Google Scholar 

  5. Tugnait J K. Approaches of FIR system identification with noisy data using higher order statistics. IEEE Trans Acoust Speech Signal Process, 1990, 38: 1307–1317

    Article  MATH  Google Scholar 

  6. Wang G, Kapilan B, Razul S G, et al. Blind equalization in the presence of co-channel interference based on higher-order statistics. Circ Syst Signal Process, 2018, 37: 4150–4161

    Article  Google Scholar 

  7. Li J, Feng D Z, Li B B. A robust adaptive weighted constant modulus algorithm for blind equalization of wireless communications systems under impulsive noise environment. AEU Int J Electron Commun, 2018, 83: 150–155

    Article  Google Scholar 

  8. Gelli G, Verde F. Two-stage interference-resistant adaptive periodically time-varying CMA blind equalization. IEEE Trans Signal Process, 2002, 50: 662–672

    Article  Google Scholar 

  9. Chang W C, Yuan J T. CMA adaptive equalization in subspace pre-whitened blind receivers. Digital Signal Process, 2019, 88: 33–40

    Article  Google Scholar 

  10. Yilmaz B B, Erdogan A T. Compressed training adaptive equalization: algorithms and analysis. IEEE Trans Commun, 2017, 65: 3907–3921

    Article  Google Scholar 

  11. Sun J Q, Li X G, Chen K, et al. A novel CMA+DD_LMS blind equalization algorithm for underwater acoustic communication. Comput J, 2020, 63: 974–981

    Article  Google Scholar 

  12. Radenkovic M S, Bose T. A recursive blind adaptive identification algorithm and its almost sure convergence. IEEE Trans Circ Syst I, 2007, 54: 1380–1388

    Article  MathSciNet  MATH  Google Scholar 

  13. Xie N, Hu H Y, Wang H. A new hybrid blind equalization algorithm with steady-state performance analysis. Digital Signal Process, 2012, 22: 233–237

    Article  Google Scholar 

  14. Diversi R, Guidorzi R, Soverini U. Blind identification and equalization of two-channel FIR systems in unbalanced noise environments. Signal Process, 2005, 85: 215–225

    Article  MATH  Google Scholar 

  15. Tong L, Xu G H, Kailath T. Blind identification and equalization based on second-order statistics: a time domain approach. IEEE Trans Inform Theory, 1994, 40: 340–349

    Article  Google Scholar 

  16. Abed-Meraim K, Moulines E, Loubaton P. Prediction error method for second-order blind identification. IEEE Trans Signal Process, 1997, 45: 694–705

    Article  MATH  Google Scholar 

  17. Ding Z. Matrix outer-product decomposition method for blind multiple channel identification. IEEE Trans Signal Process, 1997, 45: 3053–3061

    Article  Google Scholar 

  18. Xu G H, Liu H, Tong L, et al. A least-squares approach to blind channel identification. IEEE Trans Signal Process, 1995, 43: 2982–2993

    Article  Google Scholar 

  19. Giannakis G B, Halford S D. Blind fractionally spaced equalization of noisy FIR channels: direct and adaptive solutions. IEEE Trans Signal Process, 1997, 45: 2277–2292

    Article  Google Scholar 

  20. Xiang Y, Yang L, Peng D Z, et al. A second-order blind equalization method robust to ill-conditioned SIMO FIR channels. Digital Signal Process, 2014, 32: 57–66

    Article  Google Scholar 

  21. Komatsu M, Tanabe N, Furukawa T. Direct blind equalization corresponding to noisy environment using rayleigh quotient. In: Proceedings of the 15th International Colloquium on Signal Processing & Its Applications (CSPA), Penang, 2019. 35–38

  22. Mashimo M, Komatsu M, Matsumoto H. Blind equalizer with noise reduction function. In: Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Taipei, 2019. 1–2

  23. Chen F J, Kwong S, Kok C W. Blind MMSE equalization of FIR/IIR channels using oversampling and multichannel linear prediction. ETRI J, 2009, 31: 162–172

    Article  Google Scholar 

  24. Haykin S O. Adaptive Filter Theory. Englewood Cliffs: Prentice Hall, 2013

    MATH  Google Scholar 

  25. Tsuda Y, Shimamura T. An improved nlms algorithm for channel equalization. In: Proceedings of IEEE International Symposium on Circuits and Systems, 2002

  26. Mandic D P. A generalized normalized gradient descent algorithm. IEEE Signal Process Lett, 2004, 11: 115–118

    Article  Google Scholar 

  27. Choi Y S, Shin H C, Song W J. Robust regularization for normalized LMS algorithms. IEEE Trans Circ Syst II, 2006, 53: 627–631

    Google Scholar 

  28. Shin H C, Sayed A H, Song W J. Variable step-size NLMS and affine projection algorithms. IEEE Signal Process Lett, 2004, 11: 132–135

    Article  Google Scholar 

  29. Benesty J, Rey H, Vega L R, et al. A nonparametric VSS NLMS algorithm. IEEE Signal Process Lett, 2006, 13: 581–584

    Article  Google Scholar 

  30. Sayed A H. Normalized LMS Algorithm. Hoboken: Wiley, 2008. 178–182

    Google Scholar 

  31. Lou J, Jia L J, Tao R, et al. Distributed incremental bias-compensated RLS estimation over multi-agent networks. Sci China Inf Sci, 2017, 60: 032204

    Article  Google Scholar 

  32. Lou J, Jia L J, Wang Y N. Diffusion bias-compensated RLS estimation with quantized measurements over adaptive networks. IFAC-PapersOnLine, 2016, 49: 1255–1260

    Article  Google Scholar 

  33. Lou J, Jia L J, Ye Y Z, et al. Distributed bias-compensated recursive least squares estimation over multi-agent networks. In: Proceedings of the 35th Chinese Control Conference (CCC), Chengdu, 2016. 7996–8001

  34. Lou J, Jia L J, Yang Z J. Diffusion bias-compensated RLS estimation in noisy autoregressive process over adaptive networks. In: Proceedings of Society of Instrument and Control Engineers Annual Conference, Hangzhou, 2015. 308–313

  35. Tang T, Jia L J, Lou J, et al. Adaptive EIV-FIR filtering against coloured output noise by using linear prediction technique. IET Signal Process, 2018, 12: 104–112

    Article  Google Scholar 

  36. Fan L, Jia L J, Tao R, et al. Distributed bias-compensated normalized least-mean squares algorithms with noisy input. Sci China Inf Sci, 2018, 61: 112210

    Article  Google Scholar 

  37. Jia L J, Lou J, Yang Z J. Blind adaptive identification of 2-channel systems using bias-compensated RLS algorithm. Int J Adapt Control Signal Process, 2018, 32: 301–315

    Article  MathSciNet  MATH  Google Scholar 

  38. Söderström T. Errors-in-variables methods in system identification. Automatica, 2007, 43: 939–958

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant No. 41927801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Jia, L., Tao, R. et al. Blind adaptive identification and equalization using bias-compensated NLMS methods. Sci. China Inf. Sci. 65, 152302 (2022). https://doi.org/10.1007/s11432-020-3216-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3216-0

Keywords

Navigation