Skip to main content
Log in

Adaptive state-feedback stabilization of state-constrained stochastic high-order nonlinear systems

  • Research Paper
  • Special Focus on Control and Analysis for Stochastic Systems
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper presents an adaptive state-feedback strategy for state-constrained stochastic high-order nonlinear systems. By adding a power integrator and adaptive backstepping techniques, a new adaptive controller is constructed without imposing feasibility conditions, which guarantees that all closed-loop signals are bounded almost surely, full-state constraints are not violated almost surely, and the trivial solution of the closed-loop system is stochastically asymptotically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Has’minskii R Z. Stochastic Stability of Differential Equations. Gronigen: Sijthoff and Noordhoff, 1981

    Google Scholar 

  2. Deng H, Krstić M, Williams R J. Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans Automat Contr, 2001, 46: 1237–1253

    Article  MathSciNet  MATH  Google Scholar 

  3. Mao X R. Stochastic Differential Equations and Applications. Chichester: Howrwood, 2007

    MATH  Google Scholar 

  4. Pan Z G, Basar T. Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion. SIAM J Control Optim, 1999, 37: 957–995

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu Y G, Pan Z G, Shi S J. Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost. IEEE Trans Automat Contr, 2003, 48: 509–513

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu Z J, Xie X J, Zhang S Y. Adaptive backstepping controller design using stochastic small-gain theorem. Automatica, 2007, 43: 608–620

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu S J, Zhang J F, Jiang Z P. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica, 2007, 43: 238–251

    Article  MathSciNet  MATH  Google Scholar 

  8. Luo S X, Deng F Q, Zhao X Y, et al. Stochastic stabilization using aperiodically sampled measurements. Sci China Inf Sci, 2019, 62: 192201

    Article  MathSciNet  Google Scholar 

  9. Zhang H S, Xu J J. Optimal control with irregular performance. Sci China Inf Sci, 2019, 62: 192203

    Article  MathSciNet  Google Scholar 

  10. Huang P Y, Wang G C, Zhang H J. A partial information linear-quadratic optimal control problem of backward stochastic differential equation with its applications. Sci China Inf Sci, 2020, 63: 192204

    Article  MathSciNet  Google Scholar 

  11. Yue J M, Yan Y Y, Chen Z Q. Three matrix conditions for the reduction of finite automata based on the theory of semi-tensor product of matrices. Sci China Inf Sci, 2020, 63: 129203

    Article  MathSciNet  Google Scholar 

  12. Jiang M M, Xie X J. State feedback stabilization of stochastic nonlinear time-delay systems: a dynamic gain method. Sci China Inf Sci, 2021, 64: 119202

    Article  MathSciNet  Google Scholar 

  13. Zhao X Y, Deng F Q, Gao W H. Exponential stability of stochastic Markovian jump systems with time-varying and distributed delays. Sci China Inf Sci, 2021, 64: 209202

    Article  MathSciNet  Google Scholar 

  14. Li W Q, Yao X X, Krstić M. Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty. Automatica, 2020, 120: 109112

    Article  MathSciNet  MATH  Google Scholar 

  15. Xie X-J, Duan N. Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system. IEEE Trans Automat Contr, 2010, 55: 1197–1202

    Article  MathSciNet  MATH  Google Scholar 

  16. Xue L R, Zhang T L, Zhang W H, et al. Global adaptive stabilization and tracking control for high-order stochastic nonlinear systems with time-varying delays. IEEE Trans Automat Contr, 2018, 63: 2928–2943

    Article  MathSciNet  MATH  Google Scholar 

  17. Xie X J, Tian J. Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica, 2009, 45: 126–133

    Article  MathSciNet  MATH  Google Scholar 

  18. Li W, Liu X, Zhang S. Further results on adaptive state-feedback stabilization for stochastic high-order nonlinear systems. Automatica, 2012, 48: 1667–1675

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang M M, Xie X J, Zhang K. Finite-time stabilization of stochastic high-order nonlinear systems with FT-SISS inverse dynamics. IEEE Trans Automat Contr, 2019, 64: 313–320

    Article  MathSciNet  MATH  Google Scholar 

  20. Cui R H, Xie X J. Finite-time stabilization of stochastic low-order nonlinear systems with time-varying orders and FT-SISS inverse dynamics. Automatica, 2021, 125: 109418

    Article  MathSciNet  MATH  Google Scholar 

  21. Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45: 918–927

    Article  MathSciNet  MATH  Google Scholar 

  22. Tee K P, Ge S S. Control of nonlinear systems with partial state constraints using a barrier Lyapunov function. Int J Control, 2011, 84: 2008–2023

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu Y J, Lu S, Tong S, et al. Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints. Automatica, 2018, 87: 83–93

    Article  MathSciNet  MATH  Google Scholar 

  24. Min H, Xu S, Zhang Z. Adaptive finite-time stabilization of stochastic nonlinear systems subject to full-state constraints and input saturation. IEEE Trans Automat Contr, 2021, 66: 1306–1313

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma H, Li H Y, Liang H J, et al. Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Trans Fuzzy Syst, 2019, 27: 2242–2254

    Article  Google Scholar 

  26. Li D P, Liu L, Liu Y J, et al. Adaptive NN control without feasibility conditions for nonlinear state constrained stochastic systems with unknown time delays. IEEE Trans Cybern, 2019, 49: 4485–4494

    Article  Google Scholar 

  27. Fang L D, Ma L, Ding S H, et al. Finite-time stabilization of high-order stochastic nonlinear systems with asymmetric output constraints. IEEE Trans Syst Man Cybern Syst, 2020. doi: https://doi.org/10.1109/TSMC.2020.2965589

  28. Zhao K, Song Y D. Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems. IEEE Trans Automat Contr, 2019, 64: 1265–1272

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao K, Song Y D, Zhang Z R. Tracking control of MIMO nonlinear systems under full state constraints: a single-parameter adaptation approach free from feasibility conditions. Automatica, 2019, 107: 52–60

    Article  MathSciNet  MATH  Google Scholar 

  30. Meyn S P, Chines P E. The zero divisor problem of multivariable stochastic adaptive control. Syst Control Lett, 1985, 6: 235–238

    Article  MATH  Google Scholar 

  31. Li W, Liu L, Feng G. Distributed output-feedback tracking of multiple nonlinear systems with unmeasurable states. IEEE Trans Syst Man Cybern Syst, 2021, 51: 477–486

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Taishan Scholar Project of Shandong Province of China (Grant No. ts201712040) and National Natural Science Foundation of China (Grant No. 62073186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, R., Xie, X. Adaptive state-feedback stabilization of state-constrained stochastic high-order nonlinear systems. Sci. China Inf. Sci. 64, 200203 (2021). https://doi.org/10.1007/s11432-021-3293-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3293-0

Keywords

Navigation