Skip to main content
Log in

RGB WGM lasing woven in fiber braiding cavity

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

It is critical to realize woven and wearable red-green-blue (RGB) whispering gallery mode (WGM) lasing that is tunable and flexible in the fiber braiding cavity. However, it is still a challenge to achieve tunable full-color lasing with the large color gamut by a facile approach. Here, we design the braiding cavity to realize RGB WGM lasing with high performance. The braiding cavity consists of three optical fibers coated with dye-doped polymer. Each fiber therein serves as a resonant cavity to support multiple lasing modes. There is no interference owing to the air gap between them; therefore, we can achieve full-color WGM lasing. The lasing emission in our fiber braiding cavity covers a color gamut of 86.7% larger than standard RGB space. Our work may provide a platform for potential applications in white laser and integrated optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vahala K J. Optical microcavities. Nature, 2003, 424: 839–846

    Article  Google Scholar 

  2. Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421: 925–928

    Article  Google Scholar 

  3. McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60: 289–291

    Article  Google Scholar 

  4. Vernooy D W, Ilchenko V S, Mabuchi H, et al. High-Q measurements of fused-silica microspheres in the near infrared. Opt Lett, 1998, 23: 247–249

    Article  Google Scholar 

  5. Zhizhchenko A, Syubaev S, Berestennikov A, et al. Single-mode lasing from imprinted halide-perovskite microdisks. ACS Nano, 2019, 13: 4140–4147

    Article  Google Scholar 

  6. Heylman K D, Thakkar N, Horak E H, et al. Optical microresonators as single-particle absorption spectrometers. Nat Photon, 2016, 10: 788–795

    Article  Google Scholar 

  7. Zhang Y N, Zhou T, Han B, et al. Optical bio-chemical sensors based on whispering gallery mode resonators. Nanoscale, 2018, 10: 13832–13856

    Article  Google Scholar 

  8. Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods, 2008, 5: 591–596

    Article  Google Scholar 

  9. Vollmer F, Braun D, Libchaber A, et al. Protein detection by optical shift of a resonant microcavity. Appl Phys Lett, 2002, 80: 4057–4059

    Article  Google Scholar 

  10. Dantham V R, Holler S, Barbre C, et al. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett, 2013, 13: 3347–3351

    Article  Google Scholar 

  11. Zhi Y, Yu X C, Gong Q, et al. Single nanoparticle detection using optical microcavities. Adv Mater, 2017, 29: 1604920

    Article  Google Scholar 

  12. Frolov S V, Shkunov M, Vardeny Z V, et al. Ring microlasers from conducting polymers. Phys Rev B, 1997, 56: 4363–4366

    Article  Google Scholar 

  13. Xu Z, Zhai T, Shi X, et al. Multifunctional sensing based on an ultrathin transferrable microring laser. ACS Appl Mater Interfaces, 2021, 13: 19324–19331

    Article  Google Scholar 

  14. Ta V D, Chen R, Sun H D. Tuning whispering gallery mode lasing from self-assembled polymer droplets. Sci Rep, 2013, 3: 1362

    Article  Google Scholar 

  15. Xu Z, Tong J, Shi X, et al. Tailoring whispering gallery lasing and random lasing in a compound cavity. Polymers, 2020, 12: 656

    Article  Google Scholar 

  16. Chiasera A, Dumeige Y, Féron P, et al. Spherical whispering-gallery-mode microresonators. Laser Photon Rev, 2010, 4: 457–482

    Article  Google Scholar 

  17. Wei G Q, Wang X D, Liao L S. Recent advances in organic whispering-gallery mode lasers. Laser Photonics Rev, 2020, 14: 2000257

    Article  Google Scholar 

  18. Wei C, Gao M, Hu F, et al. Excimer emission in self-assembled organic spherical microstructures: an effective approach to wavelength switchable microlasers. Adv Opt Mater, 2016, 4: 1009–1014

    Article  Google Scholar 

  19. Gao M, Wei C, Lin X, et al. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors. Chem Commun, 2017, 53: 3102–3105

    Article  Google Scholar 

  20. Wang Y, Zeng S, Humbert G, et al. Microfluidic whispering gallery mode optical sensors for biological applications. Laser Photonics Rev, 2020, 14: 2000135

    Article  Google Scholar 

  21. Pasquardini L, Berneschi S, Barucci A, et al. Whispering gallery mode aptasensors for detection of blood proteins. J Biophoton, 2013, 6: 178–187

    Article  Google Scholar 

  22. Squires T M, Messinger R J, Manalis S R. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol, 2008, 26: 417–426

    Article  Google Scholar 

  23. Zhu J, Ozdemir S K, Xiao Y F, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photon, 2010, 4: 46–49

    Article  Google Scholar 

  24. Tang S J, Liu Z, Qian Y J, et al. A tunable optofluidic microlaser in a photostable conjugated polymer. Adv Mater, 2018, 30: 1804556

    Article  Google Scholar 

  25. Fu Y, Zhai T. Distributed feedback organic lasing in photonic crystals. Front Optoelectron, 2020, 13: 18–34

    Article  Google Scholar 

  26. Kong Y, Dai H, He X, et al. Reconfigurable RGB dye lasers based on the laminar flow control in an optofluidic chip. Opt Lett, 2018, 43: 4461–4464

    Article  Google Scholar 

  27. Zhu M, Duan Y, Liu N, et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites. Adv Funct Mater, 2019, 29: 1903294

    Article  Google Scholar 

  28. Dang C, Lee J, Breen C, et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotech, 2012, 7: 335–339

    Article  Google Scholar 

  29. Zhang W, Zhang Y M, Xie F, et al. A single-pixel RGB device in a colorful alphanumeric electrofluorochromic display. Adv Mater, 2020, 32: 2003121

    Article  Google Scholar 

  30. Müller C D, Falcou A, Reckefuss N, et al. Multi-colour organic light-emitting displays by solution processing. Nature, 2003, 421: 829–833

    Article  Google Scholar 

  31. Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing. Nat Photon, 2011, 5: 176–182

    Article  Google Scholar 

  32. Zhao Y S, Fu H, Hu F, et al. Tunable emission from binary organic one-dimensional nanomaterials: an alternative approach to white-light emission. Adv Mater, 2008, 20: NA

    Article  Google Scholar 

  33. Li S, Wang L, Zhai T, et al. Red-green-blue plasmonic random lasing from cascaded polymer slices. Laser Phys Lett, 2018, 15: 085803

    Article  Google Scholar 

  34. Foucher C, Guilhabert B, Kanibolotsky A L, et al. RGB and white-emitting organic lasers on flexible glass. Opt Express, 2016, 24: 2273–2280

    Article  Google Scholar 

  35. Ge K, Shi X, Xu Z, et al. Full-color WGM lasing in nested microcavities. Nanoscale, 2021, 13: 10792–10797

    Article  Google Scholar 

  36. Zhao J, Yan Y, Gao Z, et al. Full-color laser displays based on organic printed microlaser arrays. Nat Commun, 2019, 10: 870

    Article  Google Scholar 

  37. Hayat A, Tong J H, Chen C, et al. Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities. Sci China Inf Sci, 2020, 63: 182401

    Article  Google Scholar 

  38. Zhang X, Yan S, Tong J, et al. Perovskite random lasers on fiber facet. Nanophotonics, 2020, 9: 935–941

    Article  Google Scholar 

  39. Tong J H, Shi X Y, Wang Y, et al. Flexible plasmonic random laser for wearable humidity sensing. Sci China Inf Sci, 2021, 64: 222401

    Article  Google Scholar 

  40. Duong Ta V, Chen R, Ma L, et al. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser Photonics Rev, 2013, 7: 133–139

    Article  Google Scholar 

  41. Yetisen A K, Qu H, Manbachi A, et al. Nanotechnology in textiles. ACS Nano, 2016, 10: 3042–3068

    Article  Google Scholar 

  42. Qi K, Zhou Y, Ou K, et al. Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon, 2020, 170: 464–476

    Article  Google Scholar 

  43. Huang Y, Hu H, Huang Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano, 2015, 9: 4766–4775

    Article  Google Scholar 

  44. Weng W, Chen P, He S, et al. Smart electronic textiles. Angew Chem Int Ed, 2016, 55: 6140–6169

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (Grant No. Z180015) and National Natural Science Foundation of China (Grant No. 61822501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Guo or Tianrui Zhai.

Additional information

Supporting information

Figures S1–S7, Table S1. The supporting information is available online at https://info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, K., Xu, Z., Guo, D. et al. RGB WGM lasing woven in fiber braiding cavity. Sci. China Inf. Sci. 65, 182403 (2022). https://doi.org/10.1007/s11432-022-3436-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3436-y

Keywords

Navigation