Skip to main content
Log in

Permutation entropy improves fetal behavioural state classification based on heart rate analysis from biomagnetic recordings in near term fetuses

  • ORIGINAL ARTICLE
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The relevance of the complexity of fetal heart rate fluctuations with regard to the classification of fetal behavioural states has not been satisfyingly clarified so far. Because of the short behavioural states, the permutation entropy provides an advantageous complexity estimation leading to the Kullback–Leibler entropy (KLE). We test the hypothesis that parameters derived from KLE can improve the classification of fetal behaviour states based on classical heart rate fluctuation parameters (SDNN, RMSSD, ln(LF), ln(HF)). From measured heartbeat sequences (35 healthy fetuses at a gestational age between 35 and 40 completed weeks) representative intervals of 256 heartbeats were visually preclassified into fetal behavioural states. Employing discriminant analysis to separate the states 1F, 2F and 4F, the best classification result by classical parameters was 80.0% (SDNN). After additionally considering KLE parameters it was improved significantly (p<0.0005) to 94.3% (ln(LF), KLE_Mean). It could be confirmed that KLE can improve the state classification. This might reflect the consideration of different physiological aspects by classical and complexity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afifi AA, Clark V (1996) Computer-aided multivariate analysis. Chapman and Hall, London

    MATH  Google Scholar 

  2. Arabin B, Riedewald S (1992) An attempt to quantify characteristics of behavioral states. Am J Perinatol 9:115–119

    Article  PubMed  CAS  Google Scholar 

  3. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88:174102

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Brosius F (2002) SPSS 11. mitp, Bonn

    Google Scholar 

  5. Cao Y, Tung WW, Gao JB, Protopopescu VA, Hively LM (2004) Detecting dynamical changes in time series using the permutation entropy. Phys Rev E Stat Nonlin Soft Matter Phys 70:046217

    PubMed  ADS  MathSciNet  Google Scholar 

  6. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:068102

    Article  PubMed  ADS  CAS  Google Scholar 

  7. Cysarz D, van Leeuwen P, Bettermann H (2000) Irregulaties and nonlinearities in fetal heart period time series in the course of pregnancy. Herzschr Elektrophys 11:179–183

    Article  Google Scholar 

  8. Davidson SR, Rankin JH, Martin CB Jr, Reid DL (1992) Fetal heart rate variability and behavioral state: analysis by power spectrum. Am J Obstet Gynecol 167:717–722

    PubMed  CAS  Google Scholar 

  9. DiPietro JA, Hodgson DM, Costigan KA, Hilton SC, Johnson TR (1996) Fetal neurobehavioral development. Child Dev 67:2553–2567

    PubMed  CAS  Google Scholar 

  10. Ferrazzi E, Pardi G, Setti PL, Rodolfi M, Civardi S, Cerutti S (1989) Power spectral analysis of the heart rate of the human fetus at 26 and 36 weeks of gestation. Clin Phys Physiol Meas 10(Suppl B):57–60

    Article  PubMed  Google Scholar 

  11. Grimm B, Haueisen J, Huotilainen M, Lange S, Van Leeuwen P, Menendez T, Peters MJ, Schleussner E, Schneider U (2003) Recommended standards for fetal magnetocardiography. Pacing Clin Electrophysiol 26:2121–2126

    Article  PubMed  Google Scholar 

  12. Groome LJ, Bentz LS, Singh KP (1995) Behavioral state organization in normal human term fetuses: the relationship between periods of undefined state and other characteristics of state control. Sleep 18:77–81

    PubMed  CAS  Google Scholar 

  13. Horigome H, Takahashi MI, Asaka M, Shigemitsu S, Kandori A, Tsukada K (2000) Magnetocardiographic determination of the developmental changes in PQ, QRS and QT intervals in the foetus. Acta Paediatr 89:64–67

    Article  PubMed  CAS  Google Scholar 

  14. Hoyer D, Bauer R, Pompe B, Palus M, Zebrovski J, Rosenblum M, Zwiener U (1998) Nonlinear Analysis of the Cardiorespiratory Coordination of a Newborn Piglet. In: Kantz K, Kurths J, Mayer-Kress G (eds) Nonlinear analysis of physiological data, springer series of synergetics. Springer, Berlin Heidelberg New York, pp 167–190

    Google Scholar 

  15. Hoyer D, Friedrich H, Zwiener U, Pompe B, Baranowski R, Werdan K, Müller-Werdan U, and Schmidt H (2005a) Prognostic Impact of Autonomic Information Flow in Multiple Organ Dysfunction Syndrome Patients. Int J Cardiology (in press). online: doi: 10.1016/j.ijcard.2005.1005.1031

  16. Hoyer D, Pompe B, Chon KH, Hardraht H, Wicher C, Zwiener U (2005b) Mutual information function assesses autonomic information flow of heart rate dynamics at different time scales. IEEE Trans Biomed Eng 52:584–592

    Article  Google Scholar 

  17. Jongsma HW, Nijhuis JG (1986) Classification of fetal and neonatal heart rate patterns in relation to behavioural states. Eur J Obstet Gynecol Reprod Biol 21:293–299

    Article  PubMed  CAS  Google Scholar 

  18. Kaplan D (1998) HRV software. http://www.macalester.edu/~kaplan/hrv/doc/Feb3snap.tar

  19. Karin J, Hirsch M, Akselrod S (1993) An estimate of fetal autonomic state by spectral analysis of fetal heart rate fluctuations. Pediatr Res 34:134–138

    PubMed  CAS  Google Scholar 

  20. Kullback S (1968) Information theory and statistics. Dover Publications, Inc, Mineola

    Google Scholar 

  21. Nijhuis JG, Prechtl HF, Martin CB Jr, Bots RS (1982) Are there behavioural states in the human fetus? Early Hum Dev 6:177–195

    Article  PubMed  CAS  Google Scholar 

  22. Peters M, Crowe J, Pieri JF, Quartero H, Hayes-Gill B, James D, Stinstra J, Shakespeare S (2001) Monitoring the fetal heart non-invasively: a review of methods. J Perinat Med 29:408–416

    Article  PubMed  CAS  Google Scholar 

  23. Pillai M, James D (1990) The development of fetal heart rate patterns during normal pregnancy. Obstet Gynecol 76:812–816

    Article  PubMed  CAS  Google Scholar 

  24. Pincus SM, Viscarello RR (1992) Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet Gynecol 79:249–255

    PubMed  CAS  Google Scholar 

  25. Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monit 7:335–345

    Article  PubMed  CAS  Google Scholar 

  26. Pincus SM, Cummins TR, Haddad GG (1993) Heart rate control in normal and aborted-SIDS infants. Am J Physiol 264:R638–646

    PubMed  CAS  Google Scholar 

  27. Porta A, Baselli G, Liberati D, Montano N, Cogliati C, Gnecchi-Ruscone T, Malliani A, Cerutti S (1998) Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol Cybern 78:71–78

    Article  PubMed  MATH  CAS  Google Scholar 

  28. Prechtl HF (1974) The behavioural states of the newborn infant (a review). Brain Res 76:185–212

    Article  PubMed  CAS  Google Scholar 

  29. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Schneider U, Schleussner E, Haueisen J, Nowak H, Seewald HJ (2001) Signal analysis of auditory evoked cortical fields in fetal magnetoencephalography. Brain Topogr 14:69–80

    Article  PubMed  CAS  Google Scholar 

  31. SPSS for Windows R (2002) SPSS Inc., Chicago

  32. Stinstra J, Golbach E, van Leeuwen P, Lange S, Menendez T, Moshage W, Schleussner E, Kaehler C, Horigome H, Shigemitsu S, Peters MJ (2002) Multicentre study of fetal cardiac time intervals using magnetocardiography. BJOG 109:1235–1243

    PubMed  CAS  Google Scholar 

  33. Sturm R, Muller HP, Pasquarelli A, Demelis M, Erne SN, Terinde R, Lang D (2004) Multi-channel magnetocardiography for detecting beat morphology variations in fetal arrhythmias. Prenat Diagn 24:1–9

    Article  PubMed  CAS  Google Scholar 

  34. Taskforce (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European society of cardiology and the North American Society of pacing and electrophysiology. Eur Heart J 17:354–381

    Google Scholar 

  35. Van Leeuwen P, Lange S, Bettermann H, Gronemeyer D, Hatzmann W (1999) Fetal heart rate variability and complexity in the course of pregnancy. Early Hum Dev 54:259–269

    Article  PubMed  Google Scholar 

  36. Van Leeuwen P, Geue D, Lange S, Cysarz D, Bettermann H, Gronemeyer DH (2003) Is there evidence of fetal-maternal heart rate synchronization? BMC Physiol 3:2

    Article  PubMed  Google Scholar 

  37. Voss A, Kurths J, Kleiner HJ, Witt A, Wessel N, Saparin P, Osterziel KJ, Schurath R, Dietz R (1996) The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc Res 31:419–433

    Article  PubMed  CAS  Google Scholar 

  38. Wakai RT (2004) Assessment of fetal neurodevelopment via fetal magnetocardiography. Exp Neurol 190(Suppl 1):S65–S71

    Article  PubMed  MathSciNet  Google Scholar 

  39. Wakai RT, Wang M, Pedron SL, Reid DL, Martin CB Jr (1993) Spectral analysis of antepartum fetal heart rate variability from fetal magnetocardiogram recordings. Early Hum Dev 35:15–24

    Article  PubMed  CAS  Google Scholar 

  40. Wakai RT, Wang M, Martin CB (1994) Spatiotemporal properties of the fetal magnetocardiogram. Am J Obstet Gynecol 170:770–776

    PubMed  CAS  Google Scholar 

  41. Zhuravlev YE, Rassi D, Mishin AA, Emery SJ (2002) Dynamic analysis of beat-to-beat fetal heart rate variability recorded by SQUID magnetometer: quantification of sympatho-vagal balance. Early Hum Dev 66:1–10

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (HO 1634/9-1, KA 1726/2-1). The authors like to thank Barbara Grimm and Alina Schneider for their assistance in obtain the raw data and the team of the Biomagnetic Center, Department of Neurology, Friedrich Schiller University Jena for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, B., Pompe, B., Schneider, U. et al. Permutation entropy improves fetal behavioural state classification based on heart rate analysis from biomagnetic recordings in near term fetuses. Med Bio Eng Comput 44, 179–187 (2006). https://doi.org/10.1007/s11517-005-0015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-005-0015-z

Keywords

Navigation