Skip to main content
Log in

Classification of surface EMG signals using optimal wavelet packet method based on Davies-Bouldin criterion

  • Original Article
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

In this paper we present an optimal wavelet packet (OWP) method based on Davies-Bouldin criterion for the classification of surface electromyographic signals. To reduce the feature dimensionality of the outputs of the OWP decomposition, the principle components analysis was employed. Then we chose a neural network classifier to discriminate four types of prosthesis movements. The proposed method achieved a mean classification accuracy of 93.75%, which outperformed the method using the energy of wavelet packet coefficients (with mean classification accuracy 86.25%) and the fuzzy wavelet packet method (87.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abel EW, Zacharia PC, Forster A, Farrow TL (1996) Neural network analysis of the EMG interference pattern. Med Eng Phys 18:12–17

    Article  Google Scholar 

  2. Antonini G, Orlandi A (2001) Wavelet packet-based EMI signal processing and source identification. IEEE Trans Electromagn C 43:140–148

    Article  Google Scholar 

  3. Arivazhagan S, Ganesan L (2003) Texture classification using wavelet transform. Pattern Recognit Lett 24:1513–1521

    Article  MATH  Google Scholar 

  4. Boostani R, Moradi MH (2003) Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol Meas 24:309–319

    Article  Google Scholar 

  5. Castillo-Valdivieso PA, Merelo JJ, Prieto A, Rojas I, Romero G (2002) Statistical analysis of the parameters of a neuro-genetic algorithm. IEEE Trans Neural Netw 13:1374–1394

    Article  Google Scholar 

  6. Chan ADC, Englehart KB (2005) Continuous myoelectric control for powered prostheses using hidden Markov models. IEEE Trans Biomed Eng 52:121–124

    Article  Google Scholar 

  7. Chan FHY, Yang Y-S, Lam FK, Zhang Y-T, Parker PA (2000) Fuzzy EMG classification for prosthesis control. IEEE Trans Rehabil Eng 8:305–311

    Article  Google Scholar 

  8. Coifman RR, Wickerhauser MV (1992) Entropy-based algorithms for best basis selection. IEEE Trans Inform Theory 38:713–718

    Article  MATH  Google Scholar 

  9. Engin M (2004) ECG beat classification using neuro-fuzzy network. Pattern Recognit Lett 25:1715–1722

    Article  Google Scholar 

  10. Englehart K, Hudgins B, Parker PA, Stevenson M (1999) Classification of the myoelectric signal using time–frequency based representations. Med Eng Phys 21:431–438

    Article  Google Scholar 

  11. Frigo C, Ferrarin M, Frasson W, Pavan E, Thorsen R (2000) EMG signals detection and processing for on-line control of functional electrical stimulation. J Electromyogr Kines 10:351–360

    Article  Google Scholar 

  12. Georgakis A, Stergioulas LK, Giakas G (2003) Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency. IEEE Trans Biomed Eng 50:262–265

    Article  Google Scholar 

  13. Hu X, Wang Z, Ren X (2005) Classification of surface EMG signal using relative wavelet packet energy. Comput Meth Prog Bio 79:189–195

    Article  Google Scholar 

  14. Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40:82–94

    Article  Google Scholar 

  15. Jang G-C, Cheng C-K, Lai J-S, Kuo T-S (1994) Using time–frequency analysis technique in the classification of surface EMG signals. In: Proceedings of IEEE Engineering in Medicine and Biology Society, 16th Annual International Conference, Engineering Advances: New Opportunities for Biomedical Engineers, vol 2, pp 1242–1243

  16. Kang W-J, Shiu J-R, Cheng C-K, Lai J-S, Tsao H-W, Kuo T-S (1995) The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition. IEEE Trans Biomed Eng 42:777–785

    Article  Google Scholar 

  17. Kang W-J, Cheng C-K, Lai J-S, Shiu J-R, Kuo T-S (1996) A comparative analysis of various EMG pattern recognition methods. Med Eng Phys 18:390–395

    Article  Google Scholar 

  18. Li S, Shawe-Taylor J (2005) Comparison and fusion of multiresolution features for texture classification. Pattern Recognit Lett 26:633–638

    Article  MATH  Google Scholar 

  19. Li D, Pedrycz W, Pizzi NJ (2005) Fuzzy wavelet packet based feature extraction method and its application to biomedical signal classification. IEEE Trans Biomed Eng 52:1132–1139

    Article  Google Scholar 

  20. Luca CJD (1979) Physiology and mathematics of myoelectric signal. IEEE Trans Biomed Eng 26:313–325

    Google Scholar 

  21. Micera S, Sabatini AM, Dario P, Rossi B (1999) A hybrid approach to EMG pattern analysis for classification of arm movements using statistical and fuzzy techniques. Med Eng Phys 21:303–311

    Article  Google Scholar 

  22. Peleg D, Braiman E, Yom-Tov E, Inbar GF (2002) Classification of finger activation for use in a robotic prosthesis arm. IEEE Trans Neural Syst Rehabil Eng 10:290–293

    Article  Google Scholar 

  23. Saito N, Coifman RR (1994) Local discriminant bases. Wavelet Appl Signal Image Process II 2303:2–14

    Google Scholar 

  24. Saito N, Coifman RR, Geshwind FB, Warner F (2002) Discriminant feature extraction using empirical probability density estimation and a local basis library. Pattern Recognit 35:2841–2852

    Article  MATH  Google Scholar 

  25. Strauss DJ, Steidl G, Delb W (2003) Feature extraction by shape-adapted local discriminant bases. Signal Process 83:359–376

    Article  MATH  Google Scholar 

  26. Yan R, Gao RX (2005) An efficient approach to machine health diagnosis based on harmonic wavelet packet transform. Robot Com Int Manuf 21:291–301

    Article  Google Scholar 

  27. Yen GG, Lin K-C (2000) Wavelet packet feature extraction for vibration monitoring. IEEE Trans Ind Electron 47:650–667

    Article  Google Scholar 

  28. Zardoshti-Kermani M, Wheeler BC, Badie K, Hashemi RM (1995) EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans Rehabil Eng 3:324–333

    Article  Google Scholar 

  29. Zhang P, Verma B, Kumar K (2005) Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection. Pattern Recognit Lett 26:909–919

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China under Grant No. 60171006 and the National Basic Research Program (973) of China under Grant No. 2005CB724303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Wang, Z., Chen, W. et al. Classification of surface EMG signals using optimal wavelet packet method based on Davies-Bouldin criterion. Med Bio Eng Comput 44, 865–872 (2006). https://doi.org/10.1007/s11517-006-0100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0100-y

Keywords

Navigation