Skip to main content

Advertisement

Log in

Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The multiple demands placed on small calibre cardiovascular bypass grafts have meant that a synthetic prosthesis with good long-term patency has not been developed. A tissue-engineered graft could fulfil the ideal characteristics present in an artery. However, the great disadvantage of such a conduit is the time necessary for maturation leading to unacceptable delays once the decision to intervene surgically has been made. This maturation process is essential to produce a graft which can withstand haemodynamic stress. Once implanted, the tissue-engineered graft can contract in response to immediate haemodynamic conditions and remodel in the long term. We review the latest tissue engineering approaches used to give the favourable properties of mechanical strength, arterial compliance, low thrombogenicity, long-term resistance towards biodegradation as well as technological advances which shorten the time required for production of an implantable graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Asano Y, Ichioka S, Shibata M, Ando J, Nakatsuka T (2005) Sprouting from arteriovenous shunt vessels with increased blood flow. Med Biol Eng Comput 43(1):126–130

    Article  Google Scholar 

  2. Ashammakhi N, Ndreu A, Piras A, Nikkola L, Sindelar T, Ylikauppila H, et al (2006) Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechnol 6(9–10):2693–2711

    Article  Google Scholar 

  3. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367(9518):1241–1246

    Article  Google Scholar 

  4. Banz Y, Rieben R (2006) Endothelial cell protection in xenotransplantation: looking after a key player in rejection. Xenotransplantation 13(1):19–30

    Article  Google Scholar 

  5. Barocas VH, Girton TS, Tranquillo RT (1998) Engineered alignment in media equivalents: magnetic prealignment and mandrel compaction. J Biomech Eng 120:660–666

    Google Scholar 

  6. Berglund JD, Nerem RM, Sambanis A (2004) Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng 10(9–10):1526–1535

    Google Scholar 

  7. Bordenave L, Fernandez P, Remy-Zolghadri M, Villars S, Daculsi R, Midy D (2005) In vitro endothelialized ePTFE prostheses: clinical update 20 years after the first realisation. Clinical Hemorheol Microcirc 33:227–234

    Google Scholar 

  8. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  Google Scholar 

  9. Cho SW, Lim SH, Kim IK, Hong YS, Kim SS, Yoo KJ et al (2005) Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg 241(3):506–515

    Article  Google Scholar 

  10. Cho SW, Lim JE, Chu HS, Hyun HJ, Choi CY, Hwang KC et al (2006) Enhancement of in vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor. J Biomed Mater Res A 76(2):252–263

    Google Scholar 

  11. Clerin V, Gusic R, Gooch K (2006) Inventors. Ex vivo remodeling of excised blood vessels for vascular grafts. patent US 7011623

  12. Conklin BS, Wu H, Lin PH, Lumsden AB, Chen C (2004) Basic fibroblast growth factor coating and endothelial cell seeding of a decellularized heparin-coated vascular graft. Artif Organs 28(7):668–675

    Article  Google Scholar 

  13. Cozens-Roberts C, Lauffenburger DA, Quinn JA (1990) Receptor-mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis. Biophys J 58(4):841–856

    Article  Google Scholar 

  14. Eriksson AC, Whiss PA (2005) Measurement of adhesion of human platelets in plasma to protein surfaces in microplates. J Pharmacol Toxicol Methods 52(3):356–365

    Article  Google Scholar 

  15. Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso I, Cabrelle A et al (2006) Diabetes impairs progenitor cell mobilisation after hindlimbischaemia-reperfusion injury in rats. Diabetologia 49(12):3075–3084

    Article  Google Scholar 

  16. Fauvel-Lafeve F (1999) Microfibrils from the arterial subendothelium. In Rev Cytol 188:1–40

    Article  Google Scholar 

  17. Fletcher CD, Kruavit A, Mayou B, McKee PH (1988) Experimental microvascular autogenous vein grafts for arterial defects: II. A histopathologic study of the grafts. Microsurgery 9(2):82–86

    Article  Google Scholar 

  18. Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ et al (1996) Use of dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care 19:350–354

    Article  Google Scholar 

  19. Greenwald SE, Berry CL (2000) Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol 190:292–299

    Article  Google Scholar 

  20. Gupta BS, Kasyanov VA (1997) Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts. J Biomed Mater Res 34(3):341–349

    Article  Google Scholar 

  21. He H, Shirota T, Yasui H, Matsuda T (2003) Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential. J Thorac Cardiovasc Surg 126(2):455–464

    Article  Google Scholar 

  22. Honold J, Lehmann R, Heeschen C, Walter DH, Assmus B, Sasaki K, et al (2006) Effects of granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol 26(10):2238–2243

    Article  Google Scholar 

  23. Hsu SH, Sun SH, Chen DC (2003) Improved retention of endothelial cells seeded on polyurethane small-diameter vascular grafts modified by a recombinant RGD-containing protein. Artif Organs 27(12):1068–1078

    Article  Google Scholar 

  24. Hsu SH, Tsai IJ, Lin DJ, Chen DC (2005) The effect of dynamic culture conditions on endothelial cell seeding and retention on small diameterpolyurethane vascular grafts. Med Eng Phys 27(3):267–272

    Article  Google Scholar 

  25. Isenburg JC, Simionescu DT, Vyavahare NR (2004) Elastin stabilization in cardiovascular implants: improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials 25(16):3293–3302

    Article  Google Scholar 

  26. Isenberg BC, Williams C, Tranquillo RT (2006) Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann Biomed Eng 34(6):971–985

    Article  Google Scholar 

  27. Iwai S, Sawa Y, Ichikawa H, Taketani S, Uchimura E, Chen G et al (2004) Biodegradable polymer with collagen microsponge serves as a new bioengineered cardiovascular prosthesis. J Thorac Cardiovasc Surg 128(3):472–479

    Article  Google Scholar 

  28. Jernigan TW, Croce MA, Cagiannos C, Shell DH, Handorf CR, Fabian TC (2004) Small intestinal submucosa for vascular reconstruction in the presence of gastrointestinal contamination. Ann Surg 239(5):733–738

    Article  Google Scholar 

  29. Kakisis JD, Liapis CD, Breuer C, Sumpio BE (2005) Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J Vasc Surg 41:349–354

    Article  Google Scholar 

  30. Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res 74B(1):570–581

    Article  Google Scholar 

  31. Kannan RY, Salacinski HJ, De Groot J, Clatworthy I, Bozec L, Horton M et al (2006) The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromolecules 7(1):215–223

    Article  Google Scholar 

  32. Keuren JF, Wielders SJ, Driessen A, Verhoeven M, Hendriks M, Lindhout T (2004) Covalently bound heparin makes collagen thromboresistant. Arterioscler Thromb Vasc Biol 24(3):613–617

    Article  Google Scholar 

  33. Kidane A, Salacinski HJ, Punshon G, Ramesh B, Srai KS (2003) Synthesis and evaluation of slightly hydrophobic RGD derivative(s): use(s) for solvent casting in polymers and bioengineering application(s). Med Biol Eng Comput 41:1–6

    Article  Google Scholar 

  34. L’Heureux N, Germain L, Labbe R, Auger FA (1993) In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg 17:499–509

    Article  Google Scholar 

  35. L’Heureux N, Duserre N, Konig G, Victor B, Keire P, Wight T et al (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12(3):361–365

    Article  Google Scholar 

  36. Langer R, Vacanti J (1993) Tissue engineering. Science 260(5110):920–926

    Article  Google Scholar 

  37. Leach JB, Wolinsky JB, Stone PJ, Wong JY (2005) Crosslinked alpha-elastin biomaterials: towards a processable elastin-mimetic scaffold. Acta Biomater 1(2):155–164

    Article  Google Scholar 

  38. Lepidi S, Abatangelo G, Vindigni V, Deriu GP, Zavan B, Tonello C et al (2006) In vivo regeneration of small-diameter (2 mm) arteries using a polymer scaffold. FASEB J 20(1):103–105

    Google Scholar 

  39. Lev EI, Aboulfatova K, Harris D, Granada JF, Alviar C, Kleiman NS, et al (2006) Potential role of activated platelets in homing of human endothelial progenitor cells in subendothelial matrix. Thromb Haemost 96(4):498–504

    Google Scholar 

  40. Lewus KE, Nauman EA (2005) In vitro characterization of a bone marrow stem cell-seeded collagen gel composite for soft tissue grafts: effects of fiber number and serum concentration. Tissue Eng 11(7–8):1015–1022

    Article  Google Scholar 

  41. Long JL, Tranquillo RT (2003) Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol 22:339–350

    Article  Google Scholar 

  42. Ma Z, He W, Yong T, Ramakrishna S (2005) Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 11(7–8):1149–1158

    Article  Google Scholar 

  43. Mano Y, Sawasaki Y, Takahashi K, Goto T (1983) Cultivation of arterial endothelial cells from human umbilical cord. Experientia 39(10):1144–1146

    Article  Google Scholar 

  44. Matsumoto H, Hasegawa T, Fuse K, Yamamoto M, Saigusa M (1973) A new vascular prosthesis for a small caliber artery. Surgery 74(4):519–523

    Google Scholar 

  45. Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T (2003) Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 24(13):2303–2308

    Article  Google Scholar 

  46. McFetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB (2004) Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res 70A:224–234

    Article  Google Scholar 

  47. McKee JA, Banik SSR, Boyer MJ, Hamad NM, Lawson JH, Niklason LE et al (2003) Human arteries engineered in vitro. EMBO Rep 4(6):633–638

    Article  Google Scholar 

  48. Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y (2006) Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 13(2):77–81

    Google Scholar 

  49. Nakayama Y, Ishibashi-Ueda H, Takamizawa K (2004) In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell Transplant 13(4):439–449

    Google Scholar 

  50. Nemcova S, Noel AA, Jost CJ, Gloviczki P, Miller VM, Brockbank KG (2001) Evaluation of a xenogeneic acellular collagenmatrix as a small diameter vascular graft in dogs—preliminary observations. J Invest Surg 14(6):321–330

    Article  Google Scholar 

  51. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R et al (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  Google Scholar 

  52. Niklason LE, Abbott WM, Gao J, Klagges B, Hirschi KK, Ulubayram K et al (2001) Morphologic and mechanical characteristics of engineered bovine arteries. J Vasc Surg 33:628–638

    Article  Google Scholar 

  53. Noer A, Sorensen AL, Boquest AC, Collas P (2006) Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured and differentiated mesenchymal stem cells from adipose tissue. Mol Biol Cell (in press)

  54. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE et al (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8(2):166–177

    Article  Google Scholar 

  55. Opitz F, Schenke-Layland K, Richter W, Martin DP, Degenkolbe I, Wahlers T et al (2004) Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells. Ann Biomed Eng 32(2):212–222

    Article  Google Scholar 

  56. Quadrani P, Pasini A, Mattiolli-Belmonte M, Zannoni C, Tampieri A, Landi E et al (2005) High-resolution 3D scaffold model for engineered tissue fabrication using a rapid prototyping technique. Med Biol Eng Comput 43(2):196–199

    Article  Google Scholar 

  57. Rashid ST, Salacinski HJ, Hamilton G, Seifalian AM (2004) The use of animal models in developing the discipline of cardiovascular tissue engineering: a review. Biomaterials 25(9):1627–1637

    Article  Google Scholar 

  58. Remuzzi A, Mantero S, Columbo M, Morigi M, Binda E, Camozzi D et al (2004) Vascular smooth muscle cells on hyaluronic acid: culture and mechanical characterization of an engineered vascular construct. Tissue Eng 10(5–6):699–710

    Article  Google Scholar 

  59. Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Review: application of stem cells for vascular tissue engineering. Tissue Eng 11(9–10):1535–1552

    Article  Google Scholar 

  60. Robotin-Johnson MC, Swanson PE, Johnson DC, Schuessler RB, Cox JL (1998) An experimental model of small intestinal submucosa as a growing vascular graft. J Thorac Cardiovasc Surg 116(5):805–811

    Article  Google Scholar 

  61. Salacinski HJ, Goldner S, Giudiceandrea A, Hamilton G, Seifalian AM (2001) The mechanical behaviour of vascular grafts: a review. J Biomater Appl 15:241–278

    Article  Google Scholar 

  62. Sandusky GE, Lantz GC, Badylak SF (1995) Healing comparison of small intestine submucosa and ePTFE grafts in the canine carotid artery. J Surg Res 58(4):415–420

    Article  Google Scholar 

  63. Sarkar S, Sales KM, Hamilton G, Seifalian AM (2006) Addressing thrombogenicity in vascular graft construction. J Biomed Mater Res B (in press)

  64. Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun 341(2):573–582

    Article  Google Scholar 

  65. Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202:3305–3313

    Google Scholar 

  66. Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T et al (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129(6):1330–1338

    Google Scholar 

  67. Shirota T, He H, Yasui H, Matsuda H (2003) Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng 9(1):127–136

    Article  Google Scholar 

  68. Simionescu DT, Lu Q, Song Y, Lee JS, Rosenbalm TN, Kelley C et al (2006) Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds. Biomaterials 27(5):702–713

    Article  Google Scholar 

  69. Sreerekha PR, Krishnan LK (2006) Cultivation of endothelial progenitor cells on fibrin matrix and layering on Dacron/polytetrafluoroethylene vascular grafts. Artif Organs 30(4):242–249

    Article  Google Scholar 

  70. Stewart SF, Lyman DJ (1992) Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J Biomech 25(3):297–310

    Article  Google Scholar 

  71. Stitzel JD, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL (2001) Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold. J Biomater Appl 16(1):22–33

    Article  Google Scholar 

  72. Szycher M (1988) Biostability of polyurethane elastomers: a critical review. J Biomater Appl 3:297–402

    Google Scholar 

  73. Tai NR, Salacinski HJ, Edwards A, Hamilton G, Seifalian AM (2000) Compliance properties of conduits used in vascular reconstruction. Br J Surg 87:1516–1524

    Article  Google Scholar 

  74. Takei T, Sakai S, Ono T, Ijima H, Kawakami K (2006) Fabrication of endothelialized tube in collagen gel as starting point for self-developing capillary-like network to construct three-dimensional organs in vitro. Biotechnol Bioeng 95(1):1–7

    Article  Google Scholar 

  75. Teebken OE, Haverich A (2002) Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 23:475–485

    Article  Google Scholar 

  76. Thie M, Schlumberger W, Semich R, Rauterberg J, Robenek H (1991) Aortic smooth muscle cells in collagen lattice culture: effects on ultrastructure, prolifaration and collagen synthesis. Eur J Cell Biol 55:295–304

    Google Scholar 

  77. Thijssen DH, Vos JB, Verseyden C, van Zonneveld AJ, Smits P, Sweep FC et al (2006) Haematopoietic stem cells andendothelial progenitor cells in healthy men: effect of aging and training. Aging Cell (in press)

  78. Tiwari A, Kidane A, Salacinski HJ, Punshon G, Hamilton G, Siefalian AM (2003) Improving endothelial cell retention for single stage seeding of prosthetic grafts: use of polymer sequences of arginine–glycine–aspartate. Eur J Vasc Endovasc Surg 25(4):325–329

    Article  Google Scholar 

  79. Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, Vander SJ (2006) Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Biol Eng Comput 44(7):517–525

    Article  Google Scholar 

  80. Vara DS, Salacinski HJ, Kannan RY, Bordenave L, Hamilion G, Seifalian AM (2005) Cardiovascular tissue engineering: state of the art. Pathol Biol (Paris) 53(10):599–612

    Google Scholar 

  81. Vara DS, Punshon G, Sales KM, Hamilton G, Seifalian AM (2006) The effectof shear stress on human endothelial cells seeded oncylindrical viscoelastic conduits: an investigation of gene expression. Biotechnol Bioeng 45(3):119–130

    Google Scholar 

  82. Veith FJ, Moss CM, Sprayregen S (1979) Preoperative saphenous venography in arterial reconstructive surgery of the lower extremity. Surgery 85:253–256

    Google Scholar 

  83. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T et al (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone-marrow derived endothelial cells. Circulation 105(25):3017–3024

    Article  Google Scholar 

  84. Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Article  Google Scholar 

  85. Yavuz K, Geyik S, Pavcnik D, Uchida BT, Corless CL, Hartley DE et al (2006) Comparison of the endothelialization of small intestinal submucosa, dacron and expanded polytetrafluoroethylene suspended in the thoracoabdominal aorta of sheep. J Vasc Interv Radiol 17(5):873–882

    Article  Google Scholar 

  86. Yeh H-I, Lu S-K, Tian T-Y, Hong R-C, Lee W-H, Tsai C-H (2006) Comparison of endothelial cells grown on different stent materials. J Biomed Mater Res A 76(4):835–841

    Google Scholar 

  87. Zhang Z, Wang Z, Liu S, Kodama M (2003) Pore size, tissue ingrowth, and endothelialization of small diameter microporous polyurethane vascular prostheses. Biomaterials 25:177–187

    Article  Google Scholar 

  88. Zilla P, Deutsch M, Meinhart J (1999) Endothelial cell transplantation. Semin Vasc Surg 12:52–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Seifalian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S., Schmitz-Rixen, T., Hamilton, G. et al. Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Bio Eng Comput 45, 327–336 (2007). https://doi.org/10.1007/s11517-007-0176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0176-z

Keywords

Navigation