Skip to main content
Log in

Empirical mode decomposition: a method to reduce low frequency interferences from surface electroenterogram

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The surface electroenterogram (EEnG) is a non-invasive method of studying myoelectrical bowel activity. However, surface EEnG recordings are contaminated by cardiac activity, respiratory and motion artifacts, and other sources of interference. The aim of this work is to remove the respiration artifact and the very low frequency components from surface EEnG by means of empirical mode decomposition (EMD). Eleven recording sessions were carried out on canine model. Several parameters were calculated before and after the application of the method: signal-to-interference ratio (S/I ratio) and the attenuation level of the signal and of interference. The results show that the S/I ratio was significantly higher after the application of the method (3.68 ± 5.54 dB vs. 10.45 ± 3.65 dB), the attenuation level of signal and of interference is −0.49 ± 0.80 dB versus −7.26 ± 5.42 dB, respectively. Therefore, EMD could be a useful aid in identifying the intestinal slow wave and in removing interferences from EEnG recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akin A, Sun HH (1999) Time–frequency methods for detecting spike activity of stomach. Med Biol Eng Comput 37:381–390

    Article  Google Scholar 

  2. Amaris MA, Sanmiguel CP, Sadowski DC, Bowes KL, Mintchev MP (2002) Electrical activity from colon overlaps with normal gastric electrical activity in cutaneous recordings. Dig Dis Sci 47:2480–2485

    Article  Google Scholar 

  3. Antrade AO, Nasuto S, Kyberd P, Sweeney-Reed CM, Van Kanijn FR (2006) EMG signal filtering based on empirical mode decomposition. Biomed Signal Process Control 1:44–55

    Article  Google Scholar 

  4. Bradshaw LA, Allos SH, Wikswo JP, Richards WO (1997) Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. Am J Physiol Gastrointest Liver Physiol 35:G1159–G1167

    Google Scholar 

  5. Bradshaw LA, Richards WO, Wikswo JP (2001) Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Med Biol Eng Comput 39:35–43

    Article  Google Scholar 

  6. Byrne KG, Quigley EMM (1997) Antroduodenal manometry: an evaluation of an emerging methodology. Dig Dis 15:53–63

    Google Scholar 

  7. Camilleri M, Hasler WL, Parkman HP, Quigley EMM, Soffer E (1998) Measurement of gastrointestinal motility in the GI laboratory. Gastroenterology 115:747–762

    Article  Google Scholar 

  8. Chen JD, Lin Z (1993) Adaptive cancellation of the respiratory artifact in surface recording of small intestinal electrical activity. Comput Biol Med 23:497–509

    Article  Google Scholar 

  9. Chen JD, Mccallum RW (1994) Electrogastrography, principles and applications. Raven Press, New York

    Google Scholar 

  10. Chen JD, Schirmer BD, Mccallum RW (1993) Measurement of electrical-activity of the human small-intestine using surface electrodes. IEEE Trans Biomed Eng 40:598–602

    Article  Google Scholar 

  11. Cordova-Fraga T, Carneiro AAO, de Araujo DB, Oliveira RB, Sosa M, Baffa O (2005) Spatiotemporal evaluation of human colon motility using three-axis fluxgates and magnetic markers. Med Biol Eng Comput 43:712–715

    Article  Google Scholar 

  12. Donck LV, Lammers WJEP, Moreaux B, Smets D, Voeten J, Vekemans J, Schuurkes JAJ, Coulie B (2006) Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings. Med Biol Eng Comput 44:170–178

    Article  Google Scholar 

  13. Echeverria JC, Crowe JA, Woolfson MS, Hayes-Gill BR (2001) Application of empirical mode decomposition to heart rate variability analysis. Med Biol Eng Comput 39:471–479

    Article  Google Scholar 

  14. Garcia-Casado J, Martinez-de-Juan JL, Meseguer M, Ponce JL (2004) Stationarity study of the myoelectrical signal recorded from small bowel. In: Proc Ann Int Conf of the IEEE EMBS, San Francisco

  15. Garcia-Casado J, Martinez-de-Juan JL, Ponce JL (2005) Noninvasive measurement and analysis of intestinal myoelectrical activity using surface electrodes. IEEE Trans Biomed Eng 52:983–991

    Article  Google Scholar 

  16. Garcia-Casado J, Martinez-de-Juan JL, Ponce JL (2006) Adaptive filtering of ECG interference on surface EEnGs based on signal averaging. Physiol Meas 27:509–527

    Article  Google Scholar 

  17. Gordon AD (1987) A review of hierarchical-classification. J R Stat Soc Ser A Stat Soc 150:119–137

    Article  MATH  Google Scholar 

  18. Huang NE, Shen Z, Long SR, Wu MLC, Shih HH, Zheng QN, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc R Soc Lond A Mat 454:903–995

    Article  MATH  MathSciNet  Google Scholar 

  19. Huang NE, Wu MLC, Long SR, Shen SSP, Qu WD, Gloersen P, Fan KL (2003) A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc Lond A Mat 459:2317–2345

    MATH  MathSciNet  Google Scholar 

  20. Irimia A, Bradshaw LA (2005) Artifact reduction in magnetogastrography using fast independent component analysis. Physiol Meas 26:1059–1073

    Article  Google Scholar 

  21. Liang H (2001) Adaptive independent component analysis of multichannel electrogastrograms. Med Eng Phys 23:91–97

    Article  Google Scholar 

  22. Liang J, Cheung JY, Chen JDZ (1997) Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks. Ann Biomed Eng 25:850–857

    Google Scholar 

  23. Liang H, Lin Z, Mccallum RW (2000) Artifact reduction in electrogastrogram based on empirical mode decomposition method. Med Biol Eng Comput 38:35–41

    Article  Google Scholar 

  24. Lin ZY, Chen JDZ (1994) Recursive running DCT algorithm and its application in adaptive filtering of surface electrical recording of small-intestine. Med Biol Eng Comput 32:317–322

    Article  Google Scholar 

  25. Martinez-de-Juan JL, Saiz J, Meseguer M, Ponce JL (2000) Small bowel motility: relationship between smooth muscle contraction and electroenterogram signal. Med Eng Phys 22:189–199

    Article  Google Scholar 

  26. Mintchev MP, Bowes KL (1996) Extracting quantitative information from digital electrogastrograms. Med Biol Eng Comput 34:244–248

    Article  Google Scholar 

  27. Quigley EM (1996) Gastric and small intestinal motility in health and disease. Gastroenterol Clin North Am 25:113–145

    Article  Google Scholar 

  28. Rilling G, Flandrin P, and Goncalves P (2003) On empirical mode decomposition and its algorithms. In: IEEE-Eurasip workshop on nonlinear signal and image processing NSIP-03 Grado (I), Italy

  29. Salisbury JI, Sun Y (2004) Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition. Ann Biomed Eng 32:1348–1354

    Article  Google Scholar 

  30. Summers RW, Cramer J, Flatt AJ (1982) Computerized analysis of spike burst activity in the small-intestine. IEEE Trans Biomed Eng 29:309–314

    Article  Google Scholar 

  31. Verhagen MAMT, Van Schelven LJ, Samsom M, Smout AJPM (1999) Pitfalls in the analysis of electrogastrographic recordings. Gastroenterology 117:453–460

    Article  Google Scholar 

  32. Wang ZS, Cheung JY, Chen JDZ (1999) Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network. Med Biol Eng Comput 37:80–86

    Article  Google Scholar 

  33. Weisbrodt NW (1987) Motility of the small intestine. In: Johnson LR (ed) Physiology of the gastrointestinal tract (vol 1). Raven Press, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank J. Bertelli, J. L. Guardiola, Dr. C. Vila and the Veterinarian Unit of the Research Centre of ‘La Fe’ University Hospital (Valencia, Spain), where surgical interventions and recording sessions were carried out, and the R + D + I Linguistic Assistance Office at the UPV for their help in revising this paper. This work was supported by the Instituto Carlos III (FIS-03/0432), by the Universidad Politécnica de Valencia under Programa de apoyo a la investigación y el desarrollo de la UPV, and by Conselleria de Universitat, Educació y Ciència de la Generalitat Valenciana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Y., Garcia-Casado, J., Martinez-de-Juan, J.L. et al. Empirical mode decomposition: a method to reduce low frequency interferences from surface electroenterogram. Med Bio Eng Comput 45, 541–551 (2007). https://doi.org/10.1007/s11517-007-0189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0189-7

Keywords

Navigation