Skip to main content
Log in

Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Anterior spinal instrumentation is an alternative option to posterior instrumentation for surgical treatment of adolescent idiopathic scoliosis (AIS). However, optimal instrumentation configuration and strategies are not yet clearly defined. A biomechanical kinematic model using flexible mechanism was developed to study instrumentation strategies. Preoperative 3D reconstruction of scoliotic patient’s spine was used to define the patient-specific geometry of the model. Mechanical properties were adjusted to consider the discectomy and surgical manoeuvres were reproduced. Anterior spine surgeries of ten patients were simulated and results were compared to immediate post-operative data and showed differences of <5° for the Cobb angles. The validated model was used to find optimal instrumentation configurations for one patient prior to surgery. Six strategies were tested out of which the optimal one was identified while two were not recommended for surgery since screw forces exceeded published pullout forces. This study demonstrates the possibility to simulate anterior spine instrumentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aubin CE, Descrimes JL, Dansereau J, Skalli W, Lavaste F, Labelle H (1995) Geometrical modelling of the spine and thorax for biomechanical analysis of scoliotic deformities using finite element method. Ann Chir 49(8):749–761

    Google Scholar 

  2. Aubin CE, Petit Y, Stokes IAF, Poulin F, Gardner-Morse M, Labelle H (2003) Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Methods Biomech Biomed Eng 6(1):27–32

    Article  Google Scholar 

  3. Aubin CE, Goussev V, Petit Y (2004) Biomechanical modelling of segmental instrumentation for surgical correction of 3D spinal deformities using Euler-Bernoulli thin-beam elastic deformation equations. Med Biol Eng Comput 42(2):216–221

    Article  Google Scholar 

  4. Aubin CE, Labelle H, Ciolofan OC (2007) Variability of spinal instrumentation configurations in adolescent idiopathic scoliosis. Eur Spine J 16(1):57–64

    Article  Google Scholar 

  5. Black RC, Eng P, Gardner VO, Armstrong GWD, O’Neil J, George MS (1988) A contoured anterior spinal fixation plate. Clin Orthop 227:135–142

    Google Scholar 

  6. Berven S, Pedlow FX Jr (1999) A review of recent literature on the biomechanics of spinal instrumentation. Curr Opin Orthop 10:142–147

    Article  Google Scholar 

  7. Boudreault F (1994) Comportement mécanique des unités fonctionnelles : T3/T4, T7/T8 et T12/L1 saines et lésées du rachis humain. Masters thesis in mechanical engineering, École Polytechnique de Montréal, p 153

  8. Breeze SW, Doherty BJ, Noble PS, LeBlanc A, Heggeness MH (1998) A biomechanical study of anterior thoracolumbar screw fixation. Spine 23(17):1829–1831

    Article  Google Scholar 

  9. Brodke DS, Gollogly S, Bachus KN, Alexander Mohr R, Nguyen BKN (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 28(16):1794–1801

    Article  Google Scholar 

  10. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118(3):391–398

    Google Scholar 

  11. Cheriet F, Dansereau J, Petit Y, Aubin CE, Labelle H, de Guise JA (1999) Towards the self-calibration of a multiview radiographic imaging system for the 3D reconstruction of the human spine and rib cage. Int J Pattern Recognit Artif Intell 13:761–779

    Article  Google Scholar 

  12. Delorme S, Labelle H (1998) Correction of adolescent idiopathic scoliosis: the use of 3D geometrical and mechanical modeling of the spine to understand and predict the effects of brace treatment and of surgery. J Jpn Scoliosis Soc 13:1

    Google Scholar 

  13. Delorme S, Petit Y, de Guise JA, Labelle H, Aubin CE, Dansereau J (2003) Assessment of the 3D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 50(8):989–998

    Article  Google Scholar 

  14. Duke K, Dansereau J, Labelle H, Koller A, Joncas J, Aubin CE (2002) Study of patient positioning on a dynamic frame for scoliosis surgery. Stud Health Technol Inform 91:144–148

    Google Scholar 

  15. Dwyer AF, Newton NC, Sherwood AA (1969) An anterior approach to scoliosis. A preliminary report. Clin Orthop Relat Res 62:192–202

    Article  Google Scholar 

  16. Gardner-Morse MG, Laible JP, Stokes IA (1990) Incorporation of spinal flexibility measurements into finite element analysis. J Biomech Eng 112(4):481–483

    Google Scholar 

  17. Gardner-Morse MG, Stokes IAF (1994) Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation. J Biomech 27(2):177–181

    Article  Google Scholar 

  18. Ghista DN, Viviani GR, Subbaraj K, Lozada SJ, Srinivasan TM, Barnes G (1988) Biomechanical basis of optimal scoliosis surgical correction. J Biomech 21(2):77–88

    Article  Google Scholar 

  19. Gréalou L, Aubin CE, Labelle H (2000) Biomechanical Modeling of the C-D Instrumentation in Scoliosis: a Study of Correction Mechanisms. Arch physiol biochem 108(1–2):194

    Google Scholar 

  20. Hopf CG, Eysel P, Dubousset J (1997) Operative treatment of scoliosis with Cotrel-Dubousset-Hopf instrumentation: new anterior spinal device. Spine 22:618–627

    Article  Google Scholar 

  21. Lafage V, Dubousset J, Lavaste F, Skalli W (2004) 3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg 9(1–2):17–25

    Google Scholar 

  22. Lenke LG, Betz RR, Harms J (2004) Modern anterior scoliosis surgery, 1st edn. Quality Medical Publishing, St. Louis, Missouri, p 727

    Google Scholar 

  23. Lowe T, O’Brien M, Smith D, Fitzgerald D, Vraney R, Eule J, Alongi P (2002) Central and juxta-endplate vertebral body screw placement: a biomechanical analysis in a human cadaveric model. Spine 27(4):369–373

    Article  Google Scholar 

  24. Oden JT, Ripperger EA (1981) Mechanics of elastic structures, 2nd edn. McGraw-Hill, New York, p 351p

    Google Scholar 

  25. Panjabi MM, Brand RAJr, White AA III (1976) Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 58(A:5):642–652

    Google Scholar 

  26. Patwardan AG, Soni AH, Sullivan JA, Gudavalli MR, Srinivasan V (1982) Kinematic analysis and simulation of vertebral motion under static load-part II: simulation study. J Biomech Eng 104(2):112–118

    Google Scholar 

  27. Petit Y, Aubin CE, Labelle H (2004) Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput 42(1):55–60

    Article  Google Scholar 

  28. Poulin F, Aubin CE, Stokes IAF, Gardner-Morse M, Labelle H (1998) Biomechanical modeling of scoliotic spine instrumentation using flexible mechanisms: feasibility study. Ann Chir 52(8):761–767

    Google Scholar 

  29. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Newton-Raphson method using derivatives and Newton-Raphson methods for nonlinear systems of equations. Numerical recipes in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, England, pp 355–362, 372–375

  30. Roach JW (1999) Adolescent idiopathic scoliosis. Orthop Clin North Am 30(3):353–365

    Article  MathSciNet  Google Scholar 

  31. Robitaille M, Aubin C-E, Labelle H (2007) Intra and interobserver variability of preoperative planning for surgical instrumentation in adolescent idiopathic scoliosis. Eur Spine J (accepted)

  32. Stokes IAF, Gardner-Morse M (1993) Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis. Spine 18(16):2457–2464

    Article  Google Scholar 

  33. Stokes IAF, Gardner-Morse M, Aubin CE, Poulin F, Labelle H (1999) Biomechanical simulations for planning of scoliosis surgery, three-dimensionnal analysis of spinal deformities, vol 59. Research into spinal deformities II, IOS Press, Amsterdam, pp 343–346

  34. Trochu F (1993) A contouring program based on dual kriging interpolation. Eng Comput 9:160–177

    Article  Google Scholar 

  35. Turi M, Johnston CE, Richards DS (1993) Anterior correction of idiopathic scoliosis using TSRH instrumentation. Spine 18:417–422

    Article  Google Scholar 

  36. Vanderby RJr, Daniele L, Patwardhan A, Bunch W (1986) A method for the identification of in-vivo segmental stiffness properties of the spine. J Biomech Eng 108(4):312–316

    Article  Google Scholar 

  37. Zhang QH, Tan SH, Chou SM (2004) Investigation of fixation screw pull-out strength on human spine. J Biomech 37(4):479–485

    Article  Google Scholar 

Download references

Acknowledgments

Funded by the Natural Sciences and Engineering Research Council of Canada (Collaborative Research and Development Program jointly funded by an unrestricted educational/research grant from Medtronic Sofamor Danek).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Eric Aubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desroches, G., Aubin, CE., Sucato, D.J. et al. Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model. Med Bio Eng Comput 45, 759–768 (2007). https://doi.org/10.1007/s11517-007-0214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0214-x

Keywords

Navigation