Skip to main content
Log in

Interventricular coupling coefficients in a thick shell model of passive cardiac chamber deformation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Mechanical interplay between the adjacent ventricles is one of the principal modulators of physiopathological heart function, and the underlying mechanisms of interaction are only partially understood, hence hampering clinically useful interpretation of imaging data. In order to characterize the influence of chamber geometry on ventricular coupling, the ventricles and septum are modeled as portions of ellipsoidal shells, and configuration is derived as a function of pressure gradients by combining shell element equilibrium equations through static boundary conditions applied at the sulcus. Diastolic volume (v) surfaces are calculated as a function of pressure (p), contralateral pressure (clp) and intrathoracic pressure (p t ) and match literature data where available. Ventricular interaction is characterized in terms of partial derivatives in v–p–clp–p t space both under physiological and altered (selectively stiffened walls) conditions. The model allows prediction of diastolic ventricular v–p–clp–p t interplay in a variety of physiopathological circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kingma I, Tyberg JV, Smith ER (1983) Effects of diastolic transseptal pressure gradient on ventricular septal position and motion. Circulation 6:1304–1314

    Google Scholar 

  2. Beyar R, Dong SJ, Smith ER et al (1993) Ventricular interaction and septal deformation: a model compared with experimental data. Am J Physiol 6(Pt 2):H2044–H2056

    Google Scholar 

  3. Brinker JA, Weiss JL, Lappe DL et al (1980) Leftward septal displacement during right ventricular loading in man. Circulation 3:626–633

    Google Scholar 

  4. Francone M, Dymarkowski S, Kalantzi M et al (2006) Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol 4:944–951

    Article  Google Scholar 

  5. Santamore WP, Burkhoff D (1991) Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am J Physiol 1(Pt 2):H146–H157

    Google Scholar 

  6. Slinker BK, Glantz SA (1986) End-systolic and end-diastolic ventricular interaction. Am J Physiol 5(Pt 2):H1062–H1075

    Google Scholar 

  7. Little WC, Badke FR, O’Rourke RA (1984) Effect of right ventricular pressure on the end-diastolic left ventricular pressure–volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ Res 6:719–730

    Google Scholar 

  8. Santamore WP, Constantinescu M, Shaffer T (1988) Predictive changes in ventricular interdependence. Ann Biomed Eng 2:215–234

    Article  Google Scholar 

  9. Chung DC, Niranjan SC, Clark JW Jr et al (1997) A dynamic model of ventricular interaction and pericardial influence. Am J Physiol 6(Pt 2):H2942–H2962

    Google Scholar 

  10. McDonald IG, Feigenbaum H, Chang S (1972) Analysis of left ventricular wall motion by reflected ultrasound. Application to assessment of myocardial function. Circulation 1:14–25

    Google Scholar 

  11. Yamaguchi S, Tsuiki K, Miyawaki H et al (1989) Effect of left ventricular volume on right ventricular end-systolic pressure–volume relation. Resetting of regional preload in right ventricular free wall. Circ Res 3:623–631

    Google Scholar 

  12. Li KS, Santamore WP (1993) Contribution of each wall to biventricular function. Cardiovasc Res 5:792–800

    Article  Google Scholar 

  13. Janicki JS, Weber KT (1980) The pericardium and ventricular interaction, distensibility, and function. Am J Physiol 4:H494–H503

    Google Scholar 

  14. Duke GJ (1999) Cardiovascular effects of mechanical ventilation. Crit Care Resusc 4:388–399

    Google Scholar 

  15. Mitchell JR, Whitelaw WA, Sas R et al (2005) RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am J Physiol Heart Circ Physiol 2:H549–H557

    Article  Google Scholar 

  16. Francone M, Dymarkowski S, Kalantzi M et al (2005) Real-time cine MRI of ventricular septal motion: a novel approach to assess ventricular coupling. J Magn Reson Imaging 3:305–309

    Article  Google Scholar 

  17. Farrar DJ, Chow E, Brown CD (1995) Isolated systolic and diastolic ventricular interactions in pacing-induced dilated cardiomyopathy and effects of volume loading and pericardium. Circulation 5:1284–1290

    Google Scholar 

  18. Yamaguchi S, Li KS, Harasawa H et al (1993) Acute alterations in systolic ventricular interdependence-mechanical dependence of right ventricle on left ventricle following acute alteration of right ventricular free wall. Basic Res Cardiol 4:350–361

    Google Scholar 

  19. Seki S, Itano T, Motohiro K et al (1977) Mechanodynamics at the interventricular sulcus–reciprocal effect of the ventricles on the ventricular function. Jpn Circ J 9:967–974

    Google Scholar 

  20. Wong AY, Rautaharju PM (1968) Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am Heart J 5:649–662

    Article  Google Scholar 

  21. Nash MP, Hunter PJ (2000) Computational Mechanics of the Heart. J Elast 61:113–141

    Article  MATH  MathSciNet  Google Scholar 

  22. Stevens C, Remme E, Legrice I et al (2003) Ventricular Mechanics in diastole: material parameter sensitivity. J Biomech 36:737–748

    Article  Google Scholar 

  23. Mirsky I (1973) Ventricular and arterial wall stresses based on large deformation analyses. Biophys J 11:1141–1159

    Google Scholar 

  24. Janz RF (1982) Estimation of local myocardial stress. Am J Physiol 5:H875–H881

    Google Scholar 

  25. Taber LA (1991) On a nonlinear theory for muscle shells: part II—application to the beating left ventricle. J Biomech Eng 1:63–71

    Article  Google Scholar 

  26. Azhari H, Buchalter M, Sideman S et al (1992) A conical model to describe the nonuniformity of the left ventricular twisting motion. Ann Biomed Eng 2:149–165

    Article  Google Scholar 

  27. Santamore WP, Bartlett R, Van Buren SJ et al (1986) Ventricular coupling in constrictive pericarditis. Circulation 3:597–602

    Google Scholar 

  28. Woodard JC, Chow E, Farrar DJ (1992) Isolated ventricular systolic interaction during transient reductions in left ventricular pressure. Circ Res 5:944–951

    Google Scholar 

  29. Santamore WP, Shaffer T, Hughes D (1986) A theoretical and experimental model of ventricular interdependence. Basic Res Cardiol 5:529–538

    Article  Google Scholar 

  30. Ventsel E, Krauthammer T (2001) Thin plates and shells: theory, analysis, and applications. CRC, New York

    Google Scholar 

  31. Omens JH, May KD, McCulloch AD (1991) Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am J Physiol 3(Pt 2):H918–H928

    Google Scholar 

  32. Janicki JS, Weber KT (1980) Factors influencing the diastolic pressure–volume relation of the cardiac ventricles. Fed Proc 2:133–140

    Google Scholar 

  33. Weber KT, Janicki JS, Shroff S et al (1981) Contractile mechanics and interaction of the right and left ventricles. Am J Cardiol 3:686–695

    Article  Google Scholar 

  34. McCulloch AD, Omens JH (1991) Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J Biomech 7:539–548

    Article  Google Scholar 

  35. McCulloch AD (1995) Cardiac biomechanics. CRC Press, Boca Raton

    Google Scholar 

  36. Santamore WP, Shaffer T, Papa L (1990) Theoretical model of ventricular interdependence: pericardial effects. Am J Physiol 1(Pt 2):H181–H189

    Google Scholar 

  37. Omens JH, MacKenna DA, McCulloch AD (1993) Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J Biomech 6:665–676

    Article  Google Scholar 

  38. Smith BW, Chase JG, Nokes RI et al (2004) Minimal haemodynamic system model including ventricular interaction and valve dynamics. Med Eng Phys 2:131–139

    Article  Google Scholar 

  39. Glantz SA, Misbach GA, Moores WY et al (1978) The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res 3:433–441

    Google Scholar 

  40. Taher MF, Santamore WP, Bogen DK (1994) Ventricular interaction is described by three coupling coefficients. Am J Physiol 1(Pt 2):H228–H234

    Google Scholar 

  41. Scharf SM, Woods BO, Brown R et al (1987) Effects of the Mueller maneuver on global and regional left ventricular function in angina pectoris with or without previous myocardial infarction. Am J Cardiol 15:1305–1309

    Article  Google Scholar 

  42. Santamore WP, Heckman JL, Bove AA (1983) Cardiovascular changes from expiration to inspiration during IPPV. Am J Physiol 2:H307–H312

    Google Scholar 

  43. Feit TS (1979) Diastolic pressure-volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle. Biophys J 1:143–166

    MathSciNet  Google Scholar 

  44. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 4:289–308

    Article  Google Scholar 

  45. Maruyama Y, Ashikawa K, Isoyama S et al (1982) Mechanical interactions between four heart chambers with and without the pericardium in canine hearts. Circ Res 1:86–100

    Google Scholar 

  46. Kroeker CA, Shrive NG, Belenkie I et al (2003) Pericardium modulates left and right ventricular stroke volumes to compensate for sudden changes in atrial volume. Am J Physiol Heart Circ Physiol 6:H2247–H2254

    Google Scholar 

  47. Moulton MJ, Creswell LL, Downing SW et al (1994) Ventricular interaction in the pathologic heart. A model based study. ASAIO J 3:M773–M783

    Article  Google Scholar 

  48. Schmid H, Nash MP, Young AA et al (2006) Myocardial material parameter estimation—a comparative study for simple shear. J Biomech Eng 5:742–750

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Toschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toschi, N., Guerrisi, M. Interventricular coupling coefficients in a thick shell model of passive cardiac chamber deformation. Med Biol Eng Comput 46, 637–648 (2008). https://doi.org/10.1007/s11517-008-0324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0324-0

Keywords

Navigation