Skip to main content
Log in

Clinical achievements of impedance analysis

  • Special Issue - Review
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Various models and derived measures of arterial function have been proposed to describe and quantify pulsatile hemodynamics in humans. A major distinction can be drawn between lumped models based on circuit theory that assume infinite pulse wave velocity versus distributed, propagative models based on transmission line theory that acknowledge finite wave velocity and account for delays, wave reflection, and spatial and temporal pressure gradients within the arterial system. Although both approaches have produced useful insights into human arterial pathophysiology, there are important limitations of the lumped approach. The arterial system is heterogeneous and various segments respond differently to cardiovascular disease risk factors including advancing age. Lumping divergent change into aggregate summary variables can obscure abnormalities in regional arterial function. Analysis of a limited number of summary variables obtained by measuring aortic input impedance may provide novel insights and inform development of new treatments aimed at preventing or reversing abnormal pulsatile hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baumbach GL, Siems JE, Heistad DD (1991) Effects of local reduction in pressure on distensibility and composition of cerebral arterioles. Circ Res 68:338–351

    Google Scholar 

  2. Bertovic DA, Waddell TK, Gatzka CD, Cameron JD, Dart AM, Kingwell BA (1999) Muscular strength training is associated with low arterial compliance and high pulse pressure. Hypertension 33:1385–1391

    Google Scholar 

  3. Burattini R, Campbell KB (1989) Modified asymmetric T-tube model to infer arterial wave reflection at the aortic root. IEEE Trans Biomed Eng 36:805–814. doi:10.1109/10.30806

    Article  Google Scholar 

  4. Burattini R, Gnudi G (1982) Computer identification of models for the arterial tree input impedance: comparison between two new simple models and first experimental results. Med Biol Eng Comput 20:134–144. doi:10.1007/BF02441348

    Article  Google Scholar 

  5. Cirillo M, Stellato D, Laurenzi M, Panarelli W, Zanchetti A, De Santo NG (2000) Pulse pressure and isolated systolic hypertension: association with microalbuminuria. The GUBBIO Study Collaborative Research Group. Kidney Int 58:1211–1218. doi:10.1046/j.1523-1755.2000.00276.x

    Article  Google Scholar 

  6. Ferrier KE, Waddell TK, Gatzka CD, Cameron JD, Dart AM, Kingwell BA (2001) Aerobic exercise training does not modify large-artery compliance in isolated systolic hypertension. Hypertension 38:222–226

    Google Scholar 

  7. Franklin SS, Gustin W, Wong ND, Larson MG, Weber MA, Kannel WB et al (1997) Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation 96:308–315

    Google Scholar 

  8. Fukuhara M, Matsumura K, Ansai T, Takata Y, Sonoki K, Akifusa S et al (2006) Prediction of cognitive function by arterial stiffness in the very elderly. Circ J 70:756–761. doi:10.1253/circj.70.756

    Article  Google Scholar 

  9. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    Google Scholar 

  10. Hanon O, Haulon S, Lenoir H, Seux ML, Rigaud AS, Safar M et al (2005) Relationship between arterial stiffness and cognitive function in elderly subjects with complaints of memory loss. Stroke 36:2193–2197. doi:10.1161/01.STR.0000181771.82518.1c

    Article  Google Scholar 

  11. Kelly R, Fitchett D (1992) Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J Am Coll Cardiol 20:952–963

    Article  Google Scholar 

  12. Klein R, Klein BE, Tomany SC, Cruickshanks KJ (2003) The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam eye study. Ophthalmology 110:636–643. doi:10.1016/S0161-6420(02)01448-3

    Article  Google Scholar 

  13. Liao D, Wong TY, Klein R, Jones D, Hubbard L, Sharrett AR (2004) Relationship between carotid artery stiffness and retinal arteriolar narrowing in healthy middle-aged persons. Stroke 35:837–842. doi:10.1161/01.STR.0000120310.43457.AD

    Article  Google Scholar 

  14. Liu Z, Brin KP, Yin FC (1986) Estimation of total arterial compliance: an improved method and evaluation of current methods. Am J Physiol 251:H588–H600

    Google Scholar 

  15. Loutzenhiser R, Bidani A, Chilton L (2002) Renal myogenic response: kinetic attributes and physiological role. Circ Res 90:1316–1324. doi:10.1161/01.RES.0000024262.11534.18

    Article  Google Scholar 

  16. McDonald DA, Taylor MG (1959) The hydrodynamics of the arterial circulation. Prog Biophys Chem 9:107–173

    Google Scholar 

  17. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB and Cockcroft JR (2005) Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 46:1753–1760. doi:10.1016/j.jacc.2005.07.037

  18. Medley TL, Cole TJ, Dart AM, Gatzka CD, Kingwell BA (2004) Matrix metalloproteinase-9 genotype influences large artery stiffness through effects on aortic gene and protein expression. Arterioscler Thromb Vasc Biol 24:1479–1484. doi:10.1161/01.ATV.0000135656.49158.95

    Article  Google Scholar 

  19. Medley TL, Cole TJ, Gatzka CD, Wang WY, Dart AM, Kingwell BA (2002) Fibrillin-1 genotype is associated with aortic stiffness and disease severity in patients with coronary artery disease. Circulation 105:810–815. doi:10.1161/hc0702.104129

    Article  Google Scholar 

  20. Medley TL, Kingwell BA, Gatzka CD, Pillay P, Cole TJ (2003) Matrix metalloproteinase-3 genotype contributes to age-related aortic stiffening through modulation of gene and protein expression. Circ Res 92:1254–1261. doi:10.1161/01.RES.0000076891.24317.CA

    Article  Google Scholar 

  21. Mitchell GF, Arnold JM, Dunlap ME, O’Brien TX, Marchiori G, Warner E et al (2006) Pulsatile hemodynamic effects of candesartan in patients with chronic heart failure: The CHARM program. Eur J Heart Fail 8:191–197. doi:10.1016/j.ejheart.2005.07.006

    Article  Google Scholar 

  22. Mitchell GF, Conlin PR, Dunlap ME, Lacourciere Y, Arnold JM, Ogilvie RI et al (2008) Aortic diameter, wall stiffness, and wave reflection in systolic hypertension. Hypertension 51:105–111. doi:10.1161/HYPERTENSIONAHA.107.099721

    Article  Google Scholar 

  23. Mitchell GF, Dunlap ME, Warnica W, Ducharme A, Arnold JM, Tardif JC et al (2007) Long-term trandolapril treatment is associated with reduced aortic stiffness: the prevention of events with angiotensin-converting enzyme inhibition hemodynamic substudy. Hypertension 49:1271–1277. doi:10.1161/HYPERTENSIONAHA.106.085738

    Article  Google Scholar 

  24. Mitchell GF, Guo CY, Benjamin EJ, Larson MG, Keyes MJ, Vita JA et al (2007) Cross-sectional correlates of increased aortic stiffness in the community: the Framingham Heart Study. Circulation 115:2628–2636. doi:10.1161/CIRCULATIONAHA.106.667733

    Article  Google Scholar 

  25. Mitchell GF, Izzo JL Jr, Lacourciere Y, Ouellet JP, Neutel J, Qian C et al (2002) Omapatrilat reduces pulse pressure and proximal aortic stiffness in patients with systolic hypertension: results of the conduit hemodynamics of omapatrilat international research study. Circulation 105:2955–2961. doi:10.1161/01.CIR.0000020500.77568.3C

    Article  Google Scholar 

  26. Mitchell GF, Lacourciere Y, Ouellet JP, Izzo JL Jr, Neutel J, Kerwin LJ et al (2003) Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation 108:1592–1598. doi:10.1161/01.CIR.0000093435.04334.1F

    Article  Google Scholar 

  27. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA et al (2004) Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension 43:1239–1245. doi:10.1161/01.HYP.0000128420.01881.aa

    Article  Google Scholar 

  28. Mitchell GF, Pfeffer MA, Finn PV, Pfeffer JM (1996) Equipotent antihypertensive agents variously affect pulsatile hemodynamics and regression of cardiac hypertrophy in spontaneously hypertensive rats. Circulation 94:2923–2929

    Google Scholar 

  29. Mitchell GF, Tardif JC, Arnold JM, Marchiori G, O’Brien TX, Dunlap ME et al (2001) Pulsatile hemodynamics in congestive heart failure. Hypertension 38:1433–1439. doi:10.1161/hy1201.098298

    Article  Google Scholar 

  30. Mitchell GF, Vita JA, Larson MG, Parise H, Keyes MJ, Warner E et al (2005) Cross-sectional relations of peripheral microvascular function, cardiovascular disease risk factors, and aortic stiffness: the Framingham Heart Study. Circulation 112:3722–3728. doi:10.1161/CIRCULATIONAHA.105.551168

    Article  Google Scholar 

  31. Mohiuddin MW, Laine GA, Quick CM (2007) Increase in pulse wavelength causes the systemic arterial tree to degenerate into a classical windkessel. Am J Physiol Heart Circ Physiol 293:H1164–H1171. doi:10.1152/ajpheart.00133.2007

    Article  Google Scholar 

  32. Morishita R, Gibbons GH, Ellison KE, Lee W, Zhang L, Yu H et al (1994) Evidence for direct local effect of angiotensin in vascular hypertrophy. In vivo gene transfer of angiotensin converting enzyme. J Clin Invest 94:978–984. doi:10.1172/JCI117464

    Article  Google Scholar 

  33. Najjar SS, Scuteri A, Lakatta EG (2005) Arterial aging: is it an immutable cardiovascular risk factor? Hypertension 46:454–462. doi:10.1161/01.HYP.0000177474.06749.98

    Article  Google Scholar 

  34. Nichols WW, O’Rourke MF (1998) Aging. In: McDonald’s blood flow in arteries: theoretical, experimental and clinical principles, Chap. 16. Arnold, London, pp 345–376

  35. O’Rourke MF (1967) Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol 23:139–149

    Google Scholar 

  36. O’Rourke MF, Nichols WW (2005) Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45:652–658. doi:10.1161/01.HYP.0000153793.84859.b8

    Article  Google Scholar 

  37. Pedrinelli R, Dell’Omo G, Penno G, Bandinelli S, Bertini A, Di Bello V, Mariani M (2000) Microalbuminuria and pulse pressure in hypertensive and atherosclerotic men. Hypertension 35:48–54

    Google Scholar 

  38. Quick CM, Berger DS, Noordergraaf A (1998) Apparent arterial compliance. Am J Physiol 274:H1393–H1403

    Google Scholar 

  39. Quick CM, Mohiuddin MW, Laine GA, Noordergraaf A (2005) The arterial system pressure–volume loop. Physiol Meas 26(29-N):35

    Google Scholar 

  40. Scuteri A, Brancati AM, Gianni W, Assisi A, Volpe M (2005) Arterial stiffness is an independent risk factor for cognitive impairment in the elderly: a pilot study. J Hypertens 23:1211–1216. doi:10.1097/01.hjh.0000170384.38708.b7

    Article  Google Scholar 

  41. Scuteri A, Tesauro M, Appolloni S, Preziosi F, Brancati AM, Volpe M (2007) Arterial stiffness as an independent predictor of longitudinal changes in cognitive function in the older individual. J Hypertens 25:1035–1040

    Article  Google Scholar 

  42. Seals DR, Tanaka H, Clevenger CM, Monahan KD, Reiling MJ, Hiatt WR et al (2001) Blood pressure reductions with exercise and sodium restriction in postmenopausal women with elevated systolic pressure: role of arterial stiffness. J Am Coll Cardiol 38:506–513. doi:10.1016/S0735-1097(01)01348-1

    Article  Google Scholar 

  43. Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, De Bacquer D, Van Bortel LM et al (2007) Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension 49:1248–1255. doi:10.1161/HYPERTENSIONAHA.106.085480

    Article  Google Scholar 

  44. Sipkema P, Westerhof N (1975) Effective length of the arterial system. Ann Biomed Eng 3:296–307. doi:10.1007/BF02390974

    Article  Google Scholar 

  45. Stergiopulos N, Meister JJ, Westerhof N (1994) Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method. Ann Biomed Eng 22:392–397. doi:10.1007/BF02368245

    Article  Google Scholar 

  46. Stergiopulos N, Meister JJ, Westerhof N (1995) Evaluation of methods for estimation of total arterial compliance. Am J Physiol 268:H1540–H1548

    Google Scholar 

  47. Stergiopulos N, Westerhof N (1998) Determinants of pulse pressure. Hypertension 32:556–559

    Google Scholar 

  48. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR (2000) Aging, habitual exercise, and dynamic arterial compliance. Circulation 102:1270–1275

    Google Scholar 

  49. Taylor MG (1957) An approach to an analysis of the arterial pulse wave. I. Oscillations in an attenuating line. Phys Med Biol 1:258–269. doi:10.1088/0031-9155/1/3/304

    Article  Google Scholar 

  50. Taylor MG (1957) An approach to an analysis of the arterial pulse wave. II. Fluid oscillations in an elastic pipe. Phys Med Biol 1:321–329. doi:10.1088/0031-9155/1/4/302

    Article  Google Scholar 

  51. van der Heijden-Spek JJ, Staessen JA, Fagard RH, Hoeks AP, Boudier HA, Van Bortel LM (2000) Effect of age on brachial artery wall properties differs from the aorta and is gender dependent: a population study. Hypertension 35:637–642

    Google Scholar 

  52. Verhave JC, Fesler P, du CG, Ribstein J, Safar ME, Mimran A (2005) Elevated pulse pressure is associated with low renal function in elderly patients with isolated systolic hypertension. Hypertension 45:586–591. doi:10.1161/01.HYP.0000158843.60830.cf

    Article  Google Scholar 

  53. Vyas M, Izzo JL Jr, Lacourciere Y, Arnold JM, Dunlap ME, Amato JL et al (2007) Augmentation index and central aortic stiffness in middle-aged to elderly individuals. Am J Hypertens 20:642–647. doi:10.1016/j.amjhyper.2007.01.008

    Article  Google Scholar 

  54. Waddell TK, Dart AM, Gatzka CD, Cameron JD, Kingwell BA (2001) Women exhibit a greater age-related increase in proximal aortic stiffness than men. J Hypertens 19:2205–2212. doi:10.1097/00004872-200112000-00014

    Article  Google Scholar 

  55. Waldstein SR, Rice SC, Thayer JF, Najjar SS, Scuteri A, Zonderman AB (2008) Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension 51:99–104. doi:10.1161/HYPERTENSIONAHA.107.093674

    Article  Google Scholar 

  56. Westerhof N, Elzinga G, Sipkema P (1971) An artificial arterial system for pumping hearts. J Appl Physiol 31:776–781

    Google Scholar 

  57. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D et al (2006) Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 113:1213–1225. doi:10.1161/CIRCULATIONAHA.105.606962

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary F. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, G.F. Clinical achievements of impedance analysis. Med Biol Eng Comput 47, 153–163 (2009). https://doi.org/10.1007/s11517-008-0402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0402-3

Keywords

Navigation