Skip to main content

Advertisement

Log in

In patient dose reconstruction using a cine acquisition for dynamic arc radiation therapy

Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

An amorphous silicon (a-Si) electronic portal imaging device (EPID) was implemented to perform transit in vivo dosimetry for dynamic conformal arc therapy (DCAT). A set of images was acquired for each arc irradiation using the EPID cine acquisition mode, that supplies a frame acquisition rate of one image every 1.66 s, with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, ±1% (2SD) evaluated during 3 months, signal reproducibility within ±0.8% (2SD) and linearity with dose and dose rate within ±1% (2SD) were obtained. The transit signal, S t, due to the transmitted radiotherapy beam below a solid phantom, measured by the EPID cine acquisition mode was used to determine, (1) a set of correlation functions, F(w, L), defined as the ratio between S t and the dose at half thickness, D m, measured in solid water phantoms of different thicknesses, w and with square fields of side L, (2) a set of factors, f(d, L), that take into account the different x-ray scatter contribution from the phantom to the S t signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, D iso, for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was applied to a first patient and the results show that the reconstructed D iso values can be obtained with an accuracy within ±5%. In conclusion, it was assessed that an a-Si EPID with the cine acquisition mode is suitable to perform transit in vivo dosimetry for the DCAT therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. AAPM report no. 75 (2001) Clinical use of electronic portal imaging TG 58. Med Phys 28:712

    Google Scholar 

  2. AAPM report no. 85 (2004) Tissue inhomogeneity corrections for megavoltage photon beams. Report of Task Group No. 65. Medical Physics Publishing, Madison

  3. AAPM report no. 87 (2005) Diode in vivo dosimetry for patients receiving external beam radiation therapy TG 62. Medical Physics Publishing, Madison

  4. BJR (1996) Central axis depth dose data for use in radiotherapy. Supplement 25. British Institute of Radiology, London

  5. Boellaard R, van Herk M, Uiterwaal H, Mijnheer B (1998) First clinical tests using a liquid-filled electronic portal imaging device and a convolution model for the verification of the midplane dose. Radiother Oncol 47:303. doi:10.1016/S0167-8140(98)00008-5

    Article  Google Scholar 

  6. Chen J, Chuang C, Morin O, Aubin M, Pouliot J (2006) Calibration of the amorphous-silicon flat panel portal imager for exit-beam dosimetry. Med Phys 33:584. doi:10.1118/1.2168294

    Article  Google Scholar 

  7. Cilla S, Grimaldi L, D’Onofrio G, Viola P, Craus M, Azario L, Fidanzio A, Stimato G, Macchia G, Deodato F, Morganti A, Piermattei A (2007) Portal dose measurements by a 2D array. Phys Med 23:25. doi:10.1016/j.ejmp.2006.12.001

    Article  Google Scholar 

  8. Cosgrove VP, Jahn U, Pfaender M, Bauer S, Budach V, Wurm RE (1999) Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 50:325–336. doi:10.1016/S0167-8140(99)00020-1

    Article  Google Scholar 

  9. Depuydt T, Van Esch A, Huyskens DP (2002) A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation. Radiother Oncol 62:309. doi:10.1016/S0167-8140(01)00497-2

    Article  Google Scholar 

  10. El-Mohri Y, Antonuk LE, Yorkston J et al (1999) Relative dosimetry using active matrix flat-panel imager (AMFPI) technology. Med Phys 26:1530. doi:10.1118/1.598649

    Article  Google Scholar 

  11. Essers M, Lanson JH, Mijnheer BJ (1993) In vivo dosimetry during conformal therapy of prostatic cancer. Radiother Oncol 29:271. doi:10.1016/0167-8140(93)90258-A

    Article  Google Scholar 

  12. Essers M, Mijnheer BJ (1999) In vivo dosimetry during external photon beam radiotherapy. Int J Radiat Oncol Biol Phys 43:245. doi:10.1016/S0360-3016(98)00341-1

    Google Scholar 

  13. ESTRO (2001) Practical guidelines for the implementation of in vivo dosimetry radiotherapy with photon beams (entrance dose). Physics for clinical radiotherapy Booklet no. 5. ESTRO, Brussels

  14. Franken EM, de Boer JC, Heijmen BJ (2006) A novel approach to accurate portal dosimetry using CCD-camera based EPIDs. Med Phys 33:888. doi:10.1118/1.2172746

    Article  Google Scholar 

  15. Greer PB, Popescu CC (2003) Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy. Med Phys 30:1618. doi:10.1118/1.1582469

    Article  Google Scholar 

  16. Grein EE, Lee R, Luchka K (2002) An investigation of a new amorphous silicon electronic portal imaging device for transit dosimetry. Med Phys 29:2262. doi:10.1118/1.1508108

    Article  Google Scholar 

  17. ICRU Report 62 (1999) Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50). ICRU, Bethesda

  18. Jarry G, Verhaegen F (2007) Patient-specific dosimetry of conventional and intensity modulated radiation therapy using a novel full Monte Carlo phase space reconstruction method from electronic portal images. Phys Med Biol 52:2277. doi:10.1088/0031-9155/52/8/016

    Article  Google Scholar 

  19. Kroonwijk M, Quint S, Pasma KL et al (1998) In vivo dosimetry for prostate cancer patients using an electronic portal imaging device (EPID): demonstration of internal organ motion. Radiother Oncol 49:125. doi:10.1016/S0167-8140(98)00122-4

    Article  Google Scholar 

  20. Lanson JH, Essers M, Meijer GJ, Minken AWH, Uiterwaal GJ, Mijnheer BJ (1999) In vivo dosimetry during conformal radiotherapy requirements for and findings of a routine procedure. Radiother Oncol 52:51. doi:10.1016/S0167-8140(99)00074-2

    Article  Google Scholar 

  21. Letschert JGJ, Lebesque JV, de Boer RW, Hart AAM, Bartelink H (1990) Dose-volume correlation in radiation-related late small-bowel complications: a clinical study. Radiother Oncol 18:307. doi:10.1016/0167-8140(90)90111-9

    Article  Google Scholar 

  22. Louwe RJW, Damen EMF, van Herk M, Minken AWH, Torzsok O, Mijnheer BJ (2003) Three-dimensional dose reconstruction of breast cancer treatment using portal imaging. Med Phys 30:2376. doi:10.1118/1.1589496

    Article  Google Scholar 

  23. McDermott LN, Wendling M, Nijkamp J, Mans A, Sonke J-J, Mijnheer BJ et al (2008) 3d in vivo dose verification of entire hypo-fractionated IMRT treatments using an EPID and cone-beam CT. Radiother Oncol 86:35–42. doi:10.1016/j.radonc.2007.11.010

    Article  Google Scholar 

  24. Mijnheer BJ, Battermann JJ, Wambersie A (1987) What degree of accuracy is required and can be achieved in photon and neutron therapy? Radiother Oncol 8:237. doi:10.1016/S0167-8140(87)80022-1

    Article  Google Scholar 

  25. Mohan R, Chui C, Lidofsky L (1986) Differential pencil beam dose computation model for photons. Med Phys 13:64–73. doi:10.1118/1.595924

    Article  Google Scholar 

  26. Nijsten SM, Mijnheer BJ, Dekker A, Lambin P, Minken A (2007) Routine individualised patient dosimetry using electronic portal imaging devices. Radiother Oncol 83:65. doi:10.1016/j.radonc.2007.03.003

    Article  Google Scholar 

  27. Partridge M, Ebert M, Hesse BM (2002) IMRT verification by three-dimensional dose reconstruction from portal beam measurements. Med Phys 29:1847. doi:10.1118/1.1494988

    Article  Google Scholar 

  28. Pasma KL, Kroonwijk M, Quint S, Visser AG, Heijmen BJM (1999) Transit dosimetry with an electronic portal imaging (EPID) for 115 prostate cancer patients. Int J Radiat Oncol Biol Phys 45:1297. doi:10.1016/S0360-3016(99)00328-4

    Article  Google Scholar 

  29. Piermattei A, Grimaldi L, D’Onofrio G, Cilla S, Viola P, Craus M et al (2005) In vivo portal dosimetry by an ionization chamber. Phys Med 21:143–152. doi:10.1016/S1120-1797(05)80003-1

    Article  Google Scholar 

  30. Piermattei A, Fidanzio A, Stimato G, Azario L, Grimaldi L, D’Onofrio G, Cilla S, Balducci M, Gambacorta MA, Di Napoli N, Cellini N (2006) In vivo dosimetry by an aSi-based EPID. Med Phys 33:4414. doi:10.1118/1.2360014

    Article  Google Scholar 

  31. Potters L, Steinberg M, Rose C et al (2004) American Society of Therapeutic Radiology and Oncology, American College of Radiology practice guidelines for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 60:1026. doi:10.1016/j.ijrobp.2004.07.701

    Article  Google Scholar 

  32. SSI (2000) The Swedish Radiation Protection Institute’s regulations on radiation therapy. SSTFS Swedish Radiation Protection Authority, Stockholm

  33. Talamonti C, Casati M, Bucciolini M (2006) Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID. Med Phys 33:4367. doi:10.1118/1.2357834

    Article  Google Scholar 

  34. van Elmpt WJ, Nijsten S, Mijnheer BJ, Minken A (2005) Experimental verification of a portal dose prediction model. Med Phys 32:2805. doi:10.1118/1.1987988

    Article  Google Scholar 

  35. Van Esch A, Depuydt T, Huyskens DP (2004) The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields. Radiother Oncol 71:223. doi:10.1016/j.radonc.2004.02.018

    Article  Google Scholar 

  36. Varian MS (2000) Portal Vision™ aS500 reference manual. Varian MS, Palo Alto

  37. Verellen D, Linthout N, Bel A, Soete G, Van Den Berge D, D’haens J, Storme G (1999) Assessment of the uncertainties in dose delivery of a commercial system for linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 44:421–433. doi:10.1016/S0360-3016(99)00020-6

    Google Scholar 

  38. Wendling M, Louwe RJ, McDermott LN, Sonke JJ, Van Herk M, Mijnheer BJ (2006) Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method. Med Phys 33:259. doi:10.1118/1.2147744

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the B-MIUR Project no. 4210011 “Sviluppo di nuovi approcci terapeutici al problema clinico della resistenza alla chemioterapia antitumorale”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Piermattei.

Appendix: Determination of C α

Appendix: Determination of C α

The CT scans of the patients, generally 3 mm thick, have been uploaded in the MATrix LABoratory (MATLAB version 7.1, The MathWorks Inc., Natick, MA, USA) and processed by a home-made software CIRIO. In particular, the CT scan, containing the isocenter, is initially contoured.

The input data of the CIRIO software for every arc are

  • the gantry initial angle α i and the final angle α f of the arc θ;

  • the isocenter position;

  • the mean equivalent square field of the arc;

  • the couch angle β as respect to the gun-target direction;

  • the x-ray beam quality.

If the couch angle β = 0, only the CT slice that contains the isocenter is processed by CIRIO software. When the couch angle is not equal to 0 (for non-coplanar arcs) a number, n, of CT slices have to be processed

$$ n = \frac{{{\text{FOV}} \cdot {\text{sen}}\beta }}{\tau } $$
(1A)

where the FOV is the field of view diameter of the CT scanner (equal to 48.8 cm) and τ is the thickness of the patient’s CT slice. Using the n CT slices a non-coplanar image along the β direction is obtained interpolating its values between the two nearest CT slices that contain each given section of the transversal plane along the β direction, then the non-coplanar image is processed by the CIRIO software.

For each of the n gantry angles, α, the program supplies

  • the geometric patient’s thickness, z, the distance, d, between z/2 and the isocenter and the depth of the isocenter point z iso.

  • the mean relative physical densities along the depth z, z/2, z iso. These data are determined using the stechiometric calibration of the Hounsfield numbers. Indeed the pixel values, along a rectangular strip coincident with the beam central axis (5 mm wide), were converted firstly in mean electronic density and successively in mean physical density.

  • the water-EPLs w, w/2 w iso determined multiplying the geometrical thicknesses z, z/2 and z iso, by their mean relative physical densities.

By these data, the function F(w,L), the factors f(d,L) and the TMR can be selected to obtain the dose reconstruction factors C α and the D iso values. The execution of this phase takes no more than 5 min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piermattei, A., Fidanzio, A., Azario, L. et al. In patient dose reconstruction using a cine acquisition for dynamic arc radiation therapy. Med Biol Eng Comput 47, 425–433 (2009). https://doi.org/10.1007/s11517-009-0456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0456-x

Keywords

Navigation