Skip to main content
Log in

Effects of different technical coordinate system definitions on the three dimensional representation of the glenohumeral joint centre

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study aimed to find the most appropriate marker location, or combination thereof, for the centre of the humeral head (Wang et al. in J Biomech 31: 899–908, 1998) location representation during humeral motion. Ten male participants underwent three MRI scans in three different humeral postures. Seven technical coordinate systems (TCS) were defined from various combinations of an acromion, distal upper arm and proximal upper arm clusters of markers in a custom Matlab program. The CHH location was transformed between postures and then compared with the original MRI CHH location. The results demonstrated that following the performance of two near 180° humeral elevations, a combined acromion TCS and proximal upper arm TCS produced an average error of 23 ± 9 mm, and 18 ± 4 mm, which was significantly smaller (p < 0.01) than any other TCS. A combination of acromion and proximal upper arm TCSs should therefore be used to reference the CHH location when analysing movements incorporating large ranges of shoulder motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander EJ, Andriacchi TP (2001) Correcting for deformation in skin-based marker systems. J Biomech 34:355–361. doi:10.1016/S0021-9290(00)00192-5

    Article  Google Scholar 

  2. Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J (1998) A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng 120:743–749. doi:10.1115/1.2834888

    Article  Google Scholar 

  3. Cappello A, Stagni R, Fantozzi S, Leardini A (2005) Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during selected motor tasks. IEEE Trans Biomed Eng 52:992–998. doi:10.1109/TBME.2005.846728

    Article  Google Scholar 

  4. Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10:171–178. doi:10.1016/0268-0033(95)91394-T

    Article  Google Scholar 

  5. Cappozzo A, Catani F, Leardini A, Benedetti MG, Croce UD (1996) Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech (Bristol, Avon) 11:90–100. doi:10.1016/0268-0033(95)00046-1

    Article  Google Scholar 

  6. Cappozzo A, Cappello A, Della Croce U, Pensalfini F (1997) Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng 44:1165–1174. doi:10.1109/10.649988

    Article  Google Scholar 

  7. Cerveri P, Pedotti A, Ferrigno G (2005) Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation. J Biomech 38:2228–2236. doi:10.1016/j.jbiomech.2004.09.032

    Article  Google Scholar 

  8. Cutti AG, Cappello A, Davalli A (2006) In vivo validation of a new technique that compensates for soft tissue artefact in the upper-arm: preliminary results. Clin Biomech (Bristol, Avon) 21(Suppl 1):S13–S19. doi:10.1016/j.clinbiomech.2005.09.018

    Article  Google Scholar 

  9. Della Croce U, Cappozzo A, Kerrigan C, Lucchetti L (1997) Bone position and orientation errors: pelvis and lower limb anatomical landmark identification reliability. Gait Posture 5:156–157. doi:10.1016/S0966-6362(97)83382-6

    Article  Google Scholar 

  10. Graichen H, Stammberger T, Bonel H, Karl-Hans E, Reiser M, Eckstein F (2000) Glenohumeral translation during active and passive elevation of the shoulder—a 3D open-MRI study. J Biomech 33:609–613. doi:10.1016/S0021-9290(99)00209-2

    Article  Google Scholar 

  11. Karduna AR, McClure PW, Michener LA, Sennett B (2001) Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng 123:184–190. doi:10.1115/1.1351892

    Article  Google Scholar 

  12. Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225. doi:10.1016/j.gaitpost.2004.05.002

    Article  Google Scholar 

  13. Meskers CG, van der Helm FC, Rozendaal LA, Rozing PM (1998) In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech 31:93–96. doi:10.1016/S0021-9290(97)00101-2

    Article  Google Scholar 

  14. Rab G, Petuskey K, Bagley A (2002) A method for determination of upper extremity kinematics. Gait Posture 15:113–119. doi:10.1016/S0966-6362(01)00155-2

    Article  Google Scholar 

  15. Riemer R, Hsiao-Wecksler ET, Zhang X (2007) Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait. Gait Posture 27:578–588

    Article  Google Scholar 

  16. Schmidt R, Disselhorst-Klug C, Silny J, Rau G (1999) A marker-based measurement procedure for unconstrained wrist and elbow motions. J Biomech 32:615–621. doi:10.1016/S0021-9290(99)00036-6

    Article  Google Scholar 

  17. Stagni R, Leardini A, Cappozzo A, Grazia Benedetti M, Cappello A (2000) Effects of hip joint centre mislocation on gait analysis results. J Biomech 33:1479–1487. doi:10.1016/S0021-9290(00)00093-2

    Article  Google Scholar 

  18. Stagni R, Fantozzi S, Cappello A, Leardini A (2005) Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin Biomech (Bristol, Avon) 20:320–329. doi:10.1016/j.clinbiomech.2004.11.012

    Article  Google Scholar 

  19. Stagni R, Fantozzi S, Cappello A (2006) Propagation of anatomical landmark misplacement to knee kinematics: performance of single and double calibration. Gait Posture 24:137–141. doi:10.1016/j.gaitpost.2006.08.001

    Article  Google Scholar 

  20. Stokdijk M, Nagels J, Rozing PM (2000) The glenohumeral joint rotation centre in vivo. J Biomech 33:1629–1636. doi:10.1016/S0021-9290(00)00121-4

    Article  Google Scholar 

  21. Veeger HE, Yu B, An KN, Rozendal RH (1997) Parameters for modeling the upper extremity. J Biomech 30:647–652. doi:10.1016/S0021-9290(97)00011-0

    Article  Google Scholar 

  22. Wang X, Maurin M, Mazet F, De Castro Maia N, Voinot K, Verriest JP, Fayet M (1998) Three-dimensional modelling of the motion range of axial rotation of the upper arm. J Biomech 31:899–908. doi:10.1016/S0021-9290(98)00098-0

    Article  Google Scholar 

  23. Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992. doi:10.1016/j.jbiomech.2004.05.042

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by a University of Western Australia small grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Alderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, A.C., Alderson, J.A., Lloyd, D.G. et al. Effects of different technical coordinate system definitions on the three dimensional representation of the glenohumeral joint centre. Med Biol Eng Comput 47, 543–550 (2009). https://doi.org/10.1007/s11517-009-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0467-7

Keywords

Navigation