Skip to main content
Log in

Cell sheet integrity and nanomechanical breakdown during programmed cell death

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Apoptosis is a critical physiological pathway required for the normal functioning, homeostasis, and development of many organisms. This process is highly regulated at the biochemical level and has been intensively studied. Recent evidence has demonstrated that apoptosis is also a controlled nanomechanical process which relies on feedback between biochemical signaling and the nanomechanical properties of the microenvironment. Deregulation of the nanomechanical breakdown of apoptotic cells results in the poorly timed release of cells and cell debris that leads to the pathogenesis of several inflammatory diseases. In this study, we investigate the nanomechanical consequences of early apoptosis in human fibroblasts grown as single cells and as cell monolayers. These fibroblasts are found within the body and are involved in many processes including wound healing and repair in which apoptosis plays a major role. We find that although the cells undergo massive morphological remodeling and nanomechanical breakdown, the extra-cellular matrix (ECM) acts to maintain monolayer integrity. Via strong interactions between fibronectin and F-actin (fibronexus junctions), the ECM maintains and reinforces cell monolayers during breakdown. This study sheds new insights on our understanding of apoptosis and how biological systems utilize multiple inter- and intra-cytoarchitectures to regulate nanomechanical breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, Garcia-Cardena G, Daley GQ (2009) Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131–1135

    Article  CAS  PubMed  Google Scholar 

  2. Alenghat FJ Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002:PE6

  3. Belmokhtar CA, Hillion J, Segal-Bendirdjian E (2001) Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20:3354–3362

    Article  CAS  PubMed  Google Scholar 

  4. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  5. Borner C, Monney L (1999) Apoptosis without caspases: an inefficient molecular guillotine? Cell Death Differ 6:497–507

    Article  CAS  PubMed  Google Scholar 

  6. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  CAS  PubMed  Google Scholar 

  7. Chicurel ME, Chen CS, Ingber DE (1998) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10:232–239

    Article  CAS  PubMed  Google Scholar 

  8. Chowdhury F, Na S, Li D, Poh YC, Tanaka TS, Wang F, Wang N (2010) Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater 9:82–88

    Google Scholar 

  9. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887

    Article  CAS  PubMed  Google Scholar 

  10. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  11. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802

    Article  CAS  PubMed  Google Scholar 

  12. Engler AJ, Humbert PO, Wehrle-Haller B, Weaver VM (2009) Multiscale modeling of form and function. Science 324:208–212

    Article  CAS  PubMed  Google Scholar 

  13. Erickson HP (2002) Stretching fibronectin. J Muscle Res Cell Motil 23:575–580

    Article  PubMed  Google Scholar 

  14. Hessler JA, Budor A, Putchakayala K, Mecke A, Rieger D, Banaszak Holl MM, Orr BG, Bielinska A, Beals J, Baker J Jr (2005) Atomic force microscopy study of early morphological changes during apoptosis. Langmuir 21:9280–9286

    Article  CAS  PubMed  Google Scholar 

  15. Hogan C, Dupre-Crochet S, Norman M, Kajita M, Zimmermann C, Pelling AE, Piddini E, Baena-Lopez LA, Vincent JP, Itoh Y, Hosoya H, Pichaud F, Fujita Y (2009) Characterization of the interface between normal and transformed epithelial cells. Nat Cell Biol 11:460–467

    Article  CAS  PubMed  Google Scholar 

  16. Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8:175–176

    Article  CAS  PubMed  Google Scholar 

  17. Kim SJ, Lee JK, Kim JW, Jung JW, Seo K, Park SB, Roh KH, Lee SR, Hong YH, Lee YS, Kang KS (2008) Surface modification of polydimethylsiloxane (pdms) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells. J Mater Sci Mater Med 19:2953–2962

    Article  CAS  PubMed  Google Scholar 

  18. Kunda P, Pelling AE, Liu T, Baum B (2008) Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol 18:91–101

    Article  CAS  PubMed  Google Scholar 

  19. Kuznetsov YG, Malkin AJ, McPherson A (1997) Atomic force microscopy studies of living cells: Visualization of motility, division, aggregation, transformation, and apoptosis. J Struct Biol 120:180–191

    Article  CAS  PubMed  Google Scholar 

  20. Lam WA, Rosenbluth MJ, Fletcher DA (2007) Chemotherapy exposure increases leukemia cell stiffness. Blood 109:3505–3508

    Article  CAS  PubMed  Google Scholar 

  21. Lehenkari PP, Charras GT, Nesbitt SA, Horton MA (2000) New technologies in scanning probe microscopy for studying molecular interactions in cells. Expert Rev Mol Med 2:1–19

    CAS  PubMed  Google Scholar 

  22. Mannherz HG, Gonsior SM, Wu X, Polzar B, Pope BJ, Wartosch L, Weeds AG (2006) Dual effects of staurosporine on a431 and nrk cells: microfilament disassembly and uncoordinated lamellipodial activity followed by cell death. Eur J Cell Biol 85:785–802

    Article  CAS  PubMed  Google Scholar 

  23. Martens JC, Radmacher M (2008) Softening of the actin cytoskeleton by inhibition of myosin ii. Pflugers Arch 456:95–100

    Article  CAS  PubMed  Google Scholar 

  24. McCarthy NJ, Whyte MK, Gilbert CS, Evan GI (1997) Inhibition of ced-3/ice-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the bcl-2 homologue bak. J Cell Biol 136:215–227

    Article  CAS  PubMed  Google Scholar 

  25. Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863

    Article  CAS  PubMed  Google Scholar 

  26. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  27. Pelling AE, Horton MA (2008) An historical perspective on cell mechanics. Pflugers Arch 456:3–12

    Article  CAS  PubMed  Google Scholar 

  28. Pelling AE, Veraitch FS, Chu CP, Mason C, Horton MA (2009) Mechanical dynamics of single cells during early apoptosis. Cell Motil Cytoskelet 66:409–422

    Article  CAS  Google Scholar 

  29. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  CAS  PubMed  Google Scholar 

  30. Rotsch C, Jacobson K, Radmacher M (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci USA 96:921–926

    Article  CAS  PubMed  Google Scholar 

  31. Silberberg YR, Yakubov GE, Horton MA, Pelling AE (2009) Cell nanomechanics and focal adhesions are regulated by retinol and conjugated linoleic acid in a dose-dependent manner. Nanotechnology 20:285103

    Article  PubMed  Google Scholar 

  32. Singer II (1979) The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 16:675–685

    Article  CAS  PubMed  Google Scholar 

  33. Singer II (1982) Association of fibronectin and vinculin with focal contacts and stress fibers in stationary hamster fibroblasts. J Cell Biol 92:398–408

    Article  CAS  PubMed  Google Scholar 

  34. Singer II, Paradiso PR (1981) A transmembrane relationship between fibronectin and vinculin (130 kd protein): serum modulation in normal and transformed hamster fibroblasts. Cell 24:481–492

    Article  CAS  PubMed  Google Scholar 

  35. Singer II, Kawka DW, Kazazis DM, Clark RA (1984) In vivo co-distribution of fibronectin and actin fibers in granulation tissue: immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface. J Cell Biol 98:2091–2106

    Article  CAS  PubMed  Google Scholar 

  36. Singer II, Kazazis DM, Kawka DW (1985) Localization of the fibronexus at the surface of granulation tissue myofibroblasts using double-label immunogold electron microscopy on ultrathin frozen sections. Eur J Cell Biol 38:94–101

    CAS  PubMed  Google Scholar 

  37. Stolberg S, McCloskey KE (2009) Can shear stress direct stem cell fate? Biotechnol Prog 25:10–19

    Article  CAS  PubMed  Google Scholar 

  38. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  PubMed  Google Scholar 

  39. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  PubMed  Google Scholar 

  40. Tomasek JJ, Haaksma CJ (1991) Fibronectin filaments and actin microfilaments are organized into a fibronexus in dupuytren’s diseased tissue. Anat Rec 230:175–182

    Article  CAS  PubMed  Google Scholar 

  41. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    Article  CAS  PubMed  Google Scholar 

  42. Veraitch FS, Scott R, Wong JW, Lye GJ, Mason C (2008) The impact of manual processing on the expansion and directed differentiation of embryonic stem cells. Biotechnol Bioeng 99:1216–1229

    Article  CAS  PubMed  Google Scholar 

  43. Zhang XD, Gillespie SK, Hersey P (2004) Staurosporine induces apoptosis of melanoma by both caspase-dependent and -independent apoptotic pathways. Mol Cancer Ther 3:187–197

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Natural Sciences and Engineering Research Council (NSERC) and the Canada Research Chairs Program for support of this study. JW gratefully acknowledges the University of Ottawa NSERC CREATE Quantitative Biomedicine Program for a summer fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Pelling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Pelling, A.E. Cell sheet integrity and nanomechanical breakdown during programmed cell death. Med Biol Eng Comput 48, 1015–1022 (2010). https://doi.org/10.1007/s11517-010-0640-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0640-z

Keywords

Navigation