Skip to main content

Advertisement

Log in

Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arridge SR (1999) Optical tomography in medical imaging. Inverse Prob 15:R41–R93

    Article  Google Scholar 

  2. Boas DA, Brooks DH, Miller EL, DiMarzio CA, Kilmer M, Gaudette RJ, Zhang Q (2001) Imaging the body with diffuse optical tomography. IEEE Signal Process Mag 18(6):57–75

    Article  Google Scholar 

  3. Boverman G, Miller EL, Li A, Zhang Q, Chaves T, Brooks DH, Boas DA (2005) Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information. Phys Med Biol 50:3941–3956

    Article  PubMed  Google Scholar 

  4. Bowsher JE, Johnson VE, Turkington TG, Jaszczak RJ, Floyd CE, Coleman RE (1996) Bayesian reconstruction and use of anatomical a priori information for emission tomography. IEEE Trans Med Imaging 15(5):673–686

    Article  PubMed  CAS  Google Scholar 

  5. Eda H, Oda I, Ito Y, Wada Y, Oikawa Y, Tsunazawa Y, Tuchiya Y, Yamashita Y, Oda M, Sassaroli A, Yamada Y, Tamura M (1999) Multichannel time-resolved optical tomographic imaging system. Rev Sci Instrum 70(9):3595–3602

    Article  CAS  Google Scholar 

  6. Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50:R1–R43

    Article  PubMed  CAS  Google Scholar 

  7. Gibson AP, Austin T, Everdell NL, Schweiger M, Arridge SR, Meek JH, Wyatt JS, Delpy DT, Hebden JC (2006) Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate. NueroImage 30:521–528

    Article  CAS  Google Scholar 

  8. Green PJ (1990) Bayesian reconstruction from emission tomography data using modified EM algorithm. IEEE Trans Med Imaging 9(1):84–93

    Article  PubMed  CAS  Google Scholar 

  9. Grosenick D, Wabnitz H, Rinneberg HH, Moesta T, Schlag PM (1999) Development of a time-domain optical mammography and first in vivo applications. Appl Opt 38(13):2927–2943

    Article  PubMed  CAS  Google Scholar 

  10. Grosenick D, Moesta KT, Möller M, Mucke J, Wabnitz H, Gebauer B, Stroszczynski C, Wassermann B, Schlag PM, Rinneberg H (2005) Time-domain scanning optical mammography: I Recording and assessment of mammograms of 154 patients. Phys Med Biol 154(50):2429–2449

    Article  Google Scholar 

  11. Grosenick D, Wabnitz H, Moesta KT, Mucke J, Schlag PM, Rinneberg H (2005) Time-domain scanning optical mammography: II Optical properties and tissue parameters of carcinomas. Phys Med Biol 87(50):2451–2468

    Article  Google Scholar 

  12. Hawrysz DJ, Sevick-Muraca EM (2000) Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2(5):388–417

    Article  PubMed  CAS  Google Scholar 

  13. Hebden JC, Veenstra H, Dehghani H, Hillman EMC, Schweiger M, Arridge SR, Delpy DT (2001) Three-dimensional time-resolved optical tomography of a conical breast phantom. Appl Opt 40(19):3278–32887

    Article  PubMed  CAS  Google Scholar 

  14. Hebden JC, Gibson A, Yusof RM, Everdell N, Hillman EMC, Delpy DT, Arridge SR, Austin T, Meek JH, Wyatt JS (2002) Three-dimensional optical tomography of the premature infant brain. Phys Med Biol 47:4155–4166

    Article  PubMed  Google Scholar 

  15. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME D 82:35–45

    Article  Google Scholar 

  16. Logothetis A, Krishnamurthy V (1999) Expectation maximization algorithm for MAP estimation of jump Markov linear systems. IEEE Trans Signal Process 47(8):2139–2156

    Article  Google Scholar 

  17. Marjono A, Okawa S, Gao F, Yamada Y (2007) Light propagation for time-domain fluorescence diffuse optical tomography by convolution using lifetime function. Opt Rev 14(3):131–138

    Article  Google Scholar 

  18. O’Connor DV, Phillips D (1985) Time-correlated single-photon counting. Academic Press, London

    Google Scholar 

  19. Okawa S, Honda S (2005) Reduction of noise from magnetoencephalography data. Med Biol Eng Comput 43:630–637

    Article  PubMed  CAS  Google Scholar 

  20. Qi J (2004) Analysis of lesion detectability in Bayesian emission reconstruction with nonstationary object variability. IEEE Trans Med Imaging 23(3):321–329

    Article  PubMed  Google Scholar 

  21. Schweiger M, Arridge SR, Delpy DT (1993) Application of the finite-element method for the forward and inverse model in optical tomography. J Math Imaging Vis 3:263–283

    Article  Google Scholar 

  22. Vogel CR (2002) Computational method for inverse problems. SIAM, Philadelphia

    Book  Google Scholar 

  23. Yates T, Hebdan C, Gibson A, Everdell N, Arridge SR, Douek M (2005) Optical tomography of the breast using a multi-channel time-resolved imager. Phys Med Biol 50:2503–2517

    Article  PubMed  Google Scholar 

  24. Ye JC, Bouman CA, Webb KJ, Millane RP (2001) Nonlinear multigrid algorithms for Bayesian optical diffusion tomography. IEEE Trans Image Process 10(5):909–922

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Okawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okawa, S., Endo, Y., Hoshi, Y. et al. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography. Med Biol Eng Comput 50, 69–78 (2012). https://doi.org/10.1007/s11517-011-0774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0774-7

Keywords

Navigation