Skip to main content
Log in

Optimizing bioimpedance measurement configuration for dual-gated nuclear medicine imaging: a sensitivity study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Motion artefacts due to respiration and cardiac contractions may deteriorate the quality of nuclear medicine imaging leading to incorrect diagnosis and inadequate treatment. Motion artefacts can be minimized by simultaneous respiratory and cardiac gating, dual-gating. Currently, only cardiac gating is often performed. In this study, an optimized bioimpedance measurement configuration was determined for simultaneous respiratory and cardiac gating signal acquisition. The optimized configuration was located on anterolateral upper thorax based on sensitivity simulations utilizing a simplified thorax model. The validity of the optimized configuration was studied with six healthy volunteers. In the peak-to-peak and frequency content analyses the optimized configuration showed consistently higher peak-to-peak values and frequency content than other studied measurement configurations. This study indicates that the bioimpedance method has potential for the dual-gating in nuclear medicine imaging. The method would minimize the need of additional equipment, is easy for the technologists to use and comfortable for the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baker LE (1989) Applications of the impedance technique to the respiratory system. IEEE Trans Biomed Eng 8:50–52

    CAS  Google Scholar 

  2. Bates JHT, Schmalisch G, Filbrun D, Stocks J (2000) Tidal breath analysis for infant pulmonary testing. ERS/ATS task force on standards for infant respiratory function testing. Eur Respir J 16:1180–1192

    Article  PubMed  CAS  Google Scholar 

  3. Bour J, Kellett J (2008) Impedance cardiography: a rapid and cost-effective screening tool for cardiac disease. Eur J Intern Med 19:399–405

    Article  PubMed  Google Scholar 

  4. Burrell S, MacDonald A (2006) Artifacts and pitfalls in myocardial perfusion imaging. J Nucl Med Technol 34:193–211

    PubMed  Google Scholar 

  5. Büther F, Dawood M, Stegger L, Wubbeling F, Schäfers M, Schober O, Schäfers KP (2009) List mode-driven cardiac and respiratory gating in PET. J Nucl Med 50:674–681

    Article  PubMed  Google Scholar 

  6. Cheng KS, Isaacson D, Newell JC, Gisser DG (1989) Electrode models for electric current computed tomography. IEEE Trans Biomed Eng 36:918–924

    Article  PubMed  CAS  Google Scholar 

  7. Cho K, Kumiata S, Okada S, Kumazaki T (1999) Development of respiratory gated myocardial SPECT system. J Nucl Cardiol 6:20–28

    Article  PubMed  CAS  Google Scholar 

  8. Cooper JA, Neumann PH, McCandless BK (1992) Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 33:1566–1571

    PubMed  CAS  Google Scholar 

  9. Dawood M, Büther F, Lang N, Schober O, Schäfers KP (2007) Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes. Med Phys 34:3067–3076

    Article  PubMed  Google Scholar 

  10. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  PubMed  CAS  Google Scholar 

  11. Houtveen JH, Groot PF, de Geus EJ (2006) Validation of the thoracic impedance derived respiratory signal using multilevel analysis. Int J Psychophysiol 59:97–106

    Article  PubMed  Google Scholar 

  12. Kauppinen PK, Hyttinen JA, Kööbi T, Malmivuo J (1999) Lead field theoretical approach in bioimpedance measurements: towards more controlled measurement sensitivity. Ann N Y Acad Sci 873:135–142

    Article  PubMed  CAS  Google Scholar 

  13. Kovalski G, Keidar Z, Frenkel A, Sachs J, Attia S, Azhari H (2009) Dual “motion-frozen heart” combining respiration and contraction compensation in clinical myocardial perfusion SPECT imaging. J Nucl Cardiol 16:396–404

    Article  PubMed  Google Scholar 

  14. Lababidi Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM (1970) The first derivative thoracic impedance cardiogram. Circulation 41:651–658

    PubMed  CAS  Google Scholar 

  15. Liu C, Pierce LAI, Alessio AM, Kinahan PE (2009) The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol 54:7345–7362

    Article  PubMed  Google Scholar 

  16. Livieratos L, Rajappan K, Stegger L, Schafers K, Bailey DL, Camici PG (2006) Respiratory gating of cardiac PET data in list-mode acquisition. Eur J Nucl Med Mol Imaging 33:584–588

    Article  PubMed  Google Scholar 

  17. Luo S, Afonso VX, Webster JG, Tompkins WJ (1992) The electrode system in impedance-based ventilation measurement. IEEE Trans Biomed Eng 39:1130–1141

    Article  PubMed  CAS  Google Scholar 

  18. McQuaid SJ, Hutton BF (2008) Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT. Eur J Nucl Med Mol Imaging 35:1117–1123

    Article  PubMed  Google Scholar 

  19. Mori M, Murata K, Takahashi M, Shimoyama K, Ota T, Morita R, Sakamoto T (1994) Accurate contiguous sections without breath-holding on chest CT: value of respiratory gating and ultrafast CT. AJR Am J Roentgenol 162:1057–1062

    PubMed  CAS  Google Scholar 

  20. Nyboer J (1950) Electrical impedance plethysmography; a physical and physiologic approach to peripheral vascular study. Circulation 2:811–821

    PubMed  CAS  Google Scholar 

  21. Patterson RP (1985) Sources of the thoracic cardiogenic electrical impedance signal as determined by a model. Med Biol Eng Comput 25:411–417

    Article  Google Scholar 

  22. Patterson RP (1989) Fundamentals of impedance cardiography. IEEE Eng Med Biol Mag 8:35–38

    Article  PubMed  CAS  Google Scholar 

  23. Patterson RP, Zhang J (2003) Evaluation of an EIT reconstruction algorithm using finite difference human thorax model as phantoms. Physiol Meas 24:467–475

    Article  PubMed  Google Scholar 

  24. Pengpan T, Smith ND, Qiu W, Yao A, Mitchell CN, Soleimani M (2011) A motion-compensated cone-beam CT using electrical impedance tomography imaging. Physiol Meas 32:19–34

    Article  PubMed  CAS  Google Scholar 

  25. Schuessler TF, Gottfried SB, Goldberg P, Kearney RE, Bates JHT (1998) An adaptive filter to reduce cardiogenic oscillations on esophageal pressure signals. Ann Biomed Eng 26:260–267

    Article  PubMed  CAS  Google Scholar 

  26. Seppä V-P, Viik J, Hyttinen J (2010) Assessment of pulmonary flow using impedance pneumography. IEEE Trans Biomed Eng 57:2277–2285

    Article  PubMed  Google Scholar 

  27. Sobotta J (1994) Atlas of human anatomy volume 2 thorax, abdomen, pelvis, lower limb, 12th edn. Urban & Schwarzenberg, Munich, p 59

    Google Scholar 

  28. Somersalo E, Cheney M, Isaacson D (1992) Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math 52:1023–1040

    Article  Google Scholar 

  29. Teräs M, Kokki T, Durand-Schaefer N, Noponen T, Pietilä M, Kiss J, Hoppela E, Sipilä HT, Knuuti J (2010) Dual-gated cardiac PET-Clinical feasibility study. Eur J Nucl Med Mol Imaging 37:505–516

    Article  PubMed  Google Scholar 

  30. Vauhkonen M, Vauhkonen PJ and Kaipio JP (1998) Estimation of organ boundaries in electrical impedance tomography. In: Riu et al. (eds) X Int conf electrical bio-impedance, Barcelona, Spain, pp 421–424

  31. Vauhkonen PJ, Vauhkonen M, Savolainen T, Kaipio JP (1999) Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans Biomed Eng 46:1150–1160

    Article  PubMed  CAS  Google Scholar 

  32. Vilhunen T, Kaipio JP, Vauhkonen PJ, Savolainen T, Vauhkonen M (2002) Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory. Meas Sci Technol 13:1848–1854

    Article  CAS  Google Scholar 

  33. Wheat JM, Currie GM (2004) Impact of patient motion on myocardial perfusion SPECT diagnostic integrity: part 2. J Nucl Med Technol 32:158–163

    PubMed  Google Scholar 

  34. Witsoe DA, Kinnen E (1967) Electrical resistivity of lung at 100 kHz. Med Biol Eng 5:239–248

    Article  PubMed  CAS  Google Scholar 

  35. Zubal IG, Bizais GW, Bennett GW, Brill AB (1984) Dual gated nuclear cardiac images. IEEE Trans Nucl Sci NS-31:566–569

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank MSc Ville-Pekka Seppä, Professor Jari Hyttinen and PhD Pasi Kauppinen from the Department of Biomedical Engineering, Tampere University of Technology, Finland for providing the Biopac system as well as their help for the study. PhD Mika Tarvainen from the Department of Applied Physics, University of Eastern Finland is also acknowledged for help. Moreover, the authors wish to thank all the subjects who volunteered for this study. The study was supported by the Kuopio University Hospital, Finland (EVO, project 5031345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomas Koivumäki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koivumäki, T., Vauhkonen, M., Kuikka, J.T. et al. Optimizing bioimpedance measurement configuration for dual-gated nuclear medicine imaging: a sensitivity study. Med Biol Eng Comput 49, 783–791 (2011). https://doi.org/10.1007/s11517-011-0787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0787-2

Keywords

Navigation