Skip to main content
Log in

Delayed effect of blood pressure fluctuations on heart rate in patients with end-stage kidney disease

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The time delay of the baroreflex may be affected by decreased autonomic activity in uremia. To assess the magnitude and the time delay of heart rate response in patients with end-stage renal disease, continuous beat-to-beat intervals (IBI) and systolic blood pressure (SBP) recordings were monitored in hemodialysis (HD) patients (n = 72), in patients after renal transplantation (TX) (n = 41) and in age-matched controls (C) (n = 34). A 2-term prediction model was computed, in which each IBI change was represented as a function of SBP difference values of two immediately preceding beats. Baroreflex slope and the frequency domain variables low frequency (LF) α index, phase shift, and lag time were also calculated. b 1 coefficient, representing the dependence of IBI difference with the first previous SBP difference was lower in HD than in Cs, but increased after TX. b 1 correlated with age, baroreflex slope, and LF α, and b 2 (the 2nd term), with both the phase shift between SBP and IBI and lag time. The latter was lower in Cs than in HD or transplanted patients. These findings show that the time delay of the heart rate response to SBP variations is increased in renal insufficiency. The prolonged delay may contribute to the circulatory instability in uremic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alvarez-Ramirez J, Rodriguez E, Escheverria JC (2009) Delays in human heart beat dynamics. Chaos 19:028502, 5 pp. doi:10.1063/1.3152005

  2. Blaber AP, Yamamoto Y, Hughson RL (1995) Methodology of spontaneous baroreflex relationship assessed by surrogate data analysis. Am J Physiol 268:H1682–H1687

    PubMed  CAS  Google Scholar 

  3. Bogachev MI, Mamontov OV, Konradi AO, Uljanitski YU, Kantelhardt JW, Schlyakhto EV (2009) Analysis of blood pressure-heart feedback regulation under non-stationary conditions: beyond baroreflex sensitivity. Physiol Meas 30:631–645

    Article  PubMed  Google Scholar 

  4. Borst C, Wieling W, van Brederode JFM, Hond A, de Rijk LG, Dunning AJ (1982) Mechanisms of initial heart rate response to postural change. Am J Physiol (Heart Circ Physiol 12) 243:H676–H681

    CAS  Google Scholar 

  5. Borst C, Karemaker JM (1983) Time delays in the human baroreceptor reflex. J Auton Nerv Syst 9:399–409

    Article  PubMed  CAS  Google Scholar 

  6. Bowers EJ, Murray A (2004) Interaction between cardiac beat-to-beat interval changes and systolic blood pressure changes. Clin Auton Res 14:92–98

    Article  PubMed  Google Scholar 

  7. Chesterton LJ, McIntyre CW (2005) The assessment of baroreflex sensitivity in patients with chronic kidney disease: implications for vasomotor instability. Curr Opin Nephrol Hypertens 14:586–591

    Article  PubMed  Google Scholar 

  8. Converse RL Jr, Jacobsen TN, Jost CM, Toto RD, Grayburn PA, Obregon TM, Fouad-Tarazi F, Victor RG (1992) Paradoxical withdrawal of reflex vasoconstriction as a cause of hemodialysis-induced hypotension. J Clin Invest 90:1657–1665

    Article  PubMed  Google Scholar 

  9. deBoer RW, Karemaker JM, Strackee J et al (1987) Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol 253:H680–H689

    PubMed  CAS  Google Scholar 

  10. Eckberg DL, Kifle YT, Roberts VL (1980) Phase relationship between normal human respiration and baroreflex responsiveness. J Physiol 304:489–502

    PubMed  CAS  Google Scholar 

  11. Ferrer MT, Kennedy WR, Sahinen F (1991) Baroreflexes in patients with diabetes mellitus. Neurology 41:1462–1466

    PubMed  CAS  Google Scholar 

  12. Fisher JP, Kim A, Young CN, Ogoh S, Raven PB, Secher NH, Fadel PJ (2009) Influence of ageing on carotid baroreflex peak response latency in humans. J Physiol 587(22):5427–5439

    Article  PubMed  CAS  Google Scholar 

  13. Glantz SA (2005) Overall test for coincidence of two regression lines. In: Glanz SS (ed) Primer of biostatistics, Chap 8, vol 6th ed. McGraw-Hill Medical Publishing Division, New York, pp 280–281

    Google Scholar 

  14. Gulli G, Cooper VL, Claydon VE, Hainsworth R (2003) Cross-spectral analysis of cardiovascular parameters whilst supine may identify subjects with poor orthostatic intolerance. Clin Sci 105:207–212

    Article  Google Scholar 

  15. Gulli G, Cooper VL, Claydon VE, Hainsworth R (2005) Prolonged latency in the baroreflex mediated vascular resistance responses in subjects with postural related syncope. Clin Auton Res 15:207–212

    Article  PubMed  Google Scholar 

  16. Ikeda Y, Kawada T, Sugimachi M, Kawaguchi O, Shishido T, Sato T, Miyano H, Matsuura W, Alexander J Jr, Sunagawa K (1996) Neural arc of baroreflex optimizes dynamic pressure regulation in achieving both stability and quickness. Am J Physiol (Heart Circ Physiol 40) 271:H882–H890

    CAS  Google Scholar 

  17. Javorka M, Lazarova Z, Tonhajzerova I, Turianikova Z, Honzikova N, Fiser B, Javorka K, Baumert M (2011) Baroreflex analysis in diabetes mellitus: linear and non-linear approaches. Med Biol Eng Comput 49:279–288

    Article  PubMed  Google Scholar 

  18. Keyl C, Schneider A, Dambacher M, Bernardi L (2001) Time delay of vagally mediated cardiac baroreflex response varies with autonomic cardiovascular control. J Appl Physiol 91:283–289

    PubMed  CAS  Google Scholar 

  19. Klein IH, Abrahams AC, van Ede T, Oey T, Ligtenberg G, Blankestijn PJ (2010) Differential effects of acute and sustained cyclosporine and tacrolimus on sympathetic nerve activity. J Hypertens 28:1928–1934

    Article  PubMed  CAS  Google Scholar 

  20. La Rovere MT, Pinna GD, Raczak GR (2008) Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol 13:191–207

    Article  PubMed  Google Scholar 

  21. Laude D, Elghozi JL, Girard A, Bellard E, Bouhaddi M, Castiglioni P, Cerutti C, Cividjian A, Di Rienzo M, Fortrat JO, Janssen B, Karemaker JM, Lefthériotis G, Parati G, Persson PB, Porta A, Quintin L, Regnard J, Rüdiger H, Stauss HM (2004) Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EurobaVar study). Am J Physiol Regul Integr Comp Physiol 286:R226–R231

    Article  PubMed  CAS  Google Scholar 

  22. Legramante JM, Raimondi G, Massaro M, Cassarino S, Peruzzi G, Iellamo F (1999) Investigating feed-forward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations. Circulation 99:1760–1766

    PubMed  CAS  Google Scholar 

  23. Lerma C, Minzoni A, Infante O, Jose MV (2004) A mathematical analysis for the cardiovascular control adaptations in chronic renal failure. Artif Organs 28:398–409

    Article  PubMed  Google Scholar 

  24. Malberg H, Wessel N, Hasart A, Osterziel KJ, Voss A (2002) Advanced analysis of spontaneous baroreflex sensitivity, blood pressure and heart rate variability in patients with dilated cardiomyopathy. Clin Sci 102:465–473

    Article  PubMed  Google Scholar 

  25. Marple S (1987) Digital spectral analysis. Prentice Hall, Englewood-Cliffs

    Google Scholar 

  26. Matsukawa S, Wada T (1997) Vector autoregressive modeling for analyzing feedback regulation between heart rate and blood pressure. Am J Physiol (Heart Circ Physiol 42) 273:H478–H486

    CAS  Google Scholar 

  27. Nollo G, Faes L, Porta A, Pellegrini B, Ravelli F, Del Greco M, Disertori M, Antolini R (2002) Evidence of unbalanced regulatory mechanism of heart rate and systolic pressure after acute myocardial infarction. Am J Physiol Heart Circ Physiol 283:H1200–H1207

    PubMed  CAS  Google Scholar 

  28. Pagani M, Somers V, Furlan R, Dell’ Orto S, Conway J, Baselli G, Cerutti S, Sleight P, Malliani A (1988) Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 12:600–610

    PubMed  CAS  Google Scholar 

  29. Parati G, DiRienzo M, Bertinieri G, Pomidossi G, Casadei R, Groppelli A, Pedotti A, Zanchetti A, Mancia G (1988) Evaluation of the baroreceptor-heart rate reflex by 24-hour intra-arterial blood pressure monitoring in humans. Hypertension 12:214–222

    PubMed  CAS  Google Scholar 

  30. Penaz J (1973) Photoelectric measurement of blood pressure, volume and flow in the finger. In: Digest of the 10th international conference on medical and biological engineering, Dresden, p 104

  31. Rubinger D, Backenroth R, Sapoznikov D (2009) Restoration of baroreflex function in patients with end-stage renal disease after renal transplantation. Nephrol Dial Transplant 24:1305–1313

    Article  PubMed  Google Scholar 

  32. Sapoznikov D, Backenroth R, Rubinger D (2010) Baroreflex sensitivity and sympathovagal-balance during intradialytic hypotensive episodes. J Hypertens 28:314–324

    Article  PubMed  CAS  Google Scholar 

  33. Seidel H, Hertzel H, Eckberg DL (1997) Phase dependency of the human baroreceptor reflex. Am J Physiol 272:H2040–H2053

    PubMed  CAS  Google Scholar 

  34. Wesseling KH, De Wit B, van de Hoeven GMA, van Goudoever J, Settels J (1995) Physiocal, calibrating finger vascular physiology for Finapres. Homeostasis 36:67–82

    Google Scholar 

  35. Westerhof BE, Gisolf J, Stok WJ, Wesseling KH, Karemaker JM (2004) Time-domain cross-correlation baroreflex sensitivity; performance on EUROBAVAR data set. J Hypertens 22:1371–1380

    Article  PubMed  CAS  Google Scholar 

  36. Zhang R, Claassen JA, Shibata S, Kilic S, Martin-Cook K, Diaz Arrastia R, Levine BD (2009) Arterial-cardiac baroreflex function: insights from repeated squat-stand maneuvers. Am J Physiol Regul Integr Comp Physiol 297:R116–R123

    Article  PubMed  CAS  Google Scholar 

  37. Zhao Y, Yamamoto M, Munakata M, Nakao M, Katayama N (1999) Investigation of time delay between variations in heart rate and blood pressure. Med Biol Eng Comput 37:344–347

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dvora Rubinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapoznikov, D., Rubinger, D. Delayed effect of blood pressure fluctuations on heart rate in patients with end-stage kidney disease. Med Biol Eng Comput 49, 1045–1055 (2011). https://doi.org/10.1007/s11517-011-0806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0806-3

Keywords

Navigation