Skip to main content

Advertisement

Log in

Electric impedance of human embryonic stem cell-derived retinal pigment epithelium

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The barrier properties of epithelium are conventionally defined by transepithelial resistance (TER). TER provides information about the tightness of the epithelium. Electrical impedance spectroscopy (EIS) provides additional information regarding cell membrane properties, such as changes in electric capacitance and possible parallel or serial pathways that may correlate with the morphology of the cell layer. This study presents EIS of retinal pigment epithelial (RPE) cell model of the putative RPE differentiated from human embryonic stem cells (hESC-RPE). The generally utilized RPE cell model, ARPE-19, was used as immature control. The measured EIS was analyzed by fitting an equivalent electrical circuit model describing the resistive and capacitive properties of the RPE. Our results indicated that TER of hESC-RPE cells was close to the values of human RPE presented in the literature. This provides evidence that the stem cell-derived RPE in vitro can reach high-barrier function. Furthermore, hESC-RPE cells produced impedance spectra that can be modeled by the equivalent circuit of one time constant. ARPE-19 cells produced low-barrier properties, that is, an impedance spectra that suggested poor maturation of ARPE-19 cells. To conclude, EIS could give us means for non-invasively estimating the functionality and maturation of differentiated-RPE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arndt S, Seebach J, Psathaki K, Galla H-J, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19:583–594

    Article  PubMed  CAS  Google Scholar 

  2. Chang C-W, Defoe DM, Caldwell RB (1997) Retinal pigment epithelial cells from dystrophic rats form normal tight junctions in vitro. Invest Ophthalmol Vis Sci 38:188–195

    PubMed  CAS  Google Scholar 

  3. Coffey PJ, Girman S, Wang SM, Hetherington L, Keegan DJ, Adamson P, Greenwood J, Lund RD (2002) Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nat Neurosci 5(1):53–56

    Article  PubMed  CAS  Google Scholar 

  4. Da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P (2007) RPE transplantation and its role in retinal disease. Prog Retin Eye Res 26:598–635

    Article  PubMed  CAS  Google Scholar 

  5. Defoe DM, Ahmad A, Chen W, Hughes BA (1994) Membrane polarity of the Na+ -K+pump in primary cultures of xenopus retinal pigment epithelium. Exp Eye Res 59:587–596

    Article  PubMed  CAS  Google Scholar 

  6. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169

    Article  PubMed  CAS  Google Scholar 

  7. Frambach DA, Foin GL, Forber DD, Bok D (1990) Beta adrenergic receptors on cultured human retinal pigment epithelium. Invest Ophthalmol Vis Sci 31:1767–1772

    PubMed  CAS  Google Scholar 

  8. Gitter AH, Schulzke J-D, Sorgenfrei D, Fromm M (1997) Using chamber for high-frequency transmural impedance analysis of epithelial tissues. J Biochem Biophys Methods 35:81–88

    Article  PubMed  CAS  Google Scholar 

  9. Joseph DP, Miller SS (1991) Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J Physiol 435:439–463

    PubMed  CAS  Google Scholar 

  10. Jovov B, Wills NK, Lewis SA (1991) A spectroscopic method for assessing confluence of epithelial cell cultures. Am J Physiol Cell Physiol 261:C1196–C1203

    CAS  Google Scholar 

  11. Krug SM, Fromm M, Günzel D (2009) Two-path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance. Biophys J 97:2202–2211

    Article  PubMed  CAS  Google Scholar 

  12. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Griman S, Bischoff N, Sauvé Y, Lanza R (2006) Human embryonic stem cell–derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8(3):189–199

    Article  PubMed  CAS  Google Scholar 

  13. Maminishkis A, Chen S, Alickee S, Banzon T, Shi G, Wang FE, Hammer TEJA, Miller SS (2006) Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci 47:3612–3624

    Article  PubMed  Google Scholar 

  14. Mannermaa E, Reinisalo M, Ranta VP, Vellonen KS, Kokki H, Saarikko A, Kaarniranta K, Urtti A (2010) Filter-cultured ARPE-19 cells as outer blood-retinal barrier model. Eur J Pharm Sci 40(4):289–296

    Article  PubMed  CAS  Google Scholar 

  15. McKay BS, Burke JM (1994) Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells. Exp Cell Res 213(1):85–92

    Article  PubMed  CAS  Google Scholar 

  16. Nevala H, Ylikomi T, Tähti H (2008) Evaluation of the selected barrier properties of retinal pigment epithelial cell line ARPE-19 for an in vitro blood-brain barrier model. Hum Exp Toxicol 27:741–749

    Article  PubMed  CAS  Google Scholar 

  17. Quinn RH, Miller SS (1992) Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci 33:3513–3527

    PubMed  CAS  Google Scholar 

  18. Rajasekaran SA, Hu J, Gopal J, Gallemore R, Ryazantsev S, Bok D, Rajasekaran AK (2003) Na, K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. Am J Cell Physiol Cell Physiol 284:1497–1507

    Google Scholar 

  19. Rizzolo LJ (2007) Development and role of tight junctions in the retinal pigment epithelium. Int Rev Cytol 258:195–234

    Article  PubMed  CAS  Google Scholar 

  20. Roth F, Bindewald A, Holz FG (2004) Key pathophysiologic pathways in age-related macular disease. Graefes Arch Clin Exp Ophthalmol 242(8):710–716

    Article  PubMed  Google Scholar 

  21. Schifferdecker E, Frömter E (1978) The AC impedance of necturus gallbladder epithelium. Pflügers Arch 377:125–133

    Article  PubMed  CAS  Google Scholar 

  22. Sherwood L (2004) Human Physiology: from cells to systems, 5th edN. CA. Brooks/Cole—Thomson Leaning, Belmont

  23. Skottman H (2009) Derivation and characterization of three new human embryonic stem cell lines in Finland. In Vitro Cell Dev Biol Anim 46(3–4):206–209

    Google Scholar 

  24. Sonoda S, Spee C, Barron E, Ryan SJ, Kannan R, Hinton DR (2009) A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat Protoc 4(5):662–673

    Article  PubMed  CAS  Google Scholar 

  25. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  PubMed  CAS  Google Scholar 

  26. Toimela T, Mäenpää H, Mannerström M, Tähti H (2004) Development of an in vitro blood-brain barrier model-cytotoxicity of mercury and aluminum. Toxicol Appl Pharmacol 195(1):73–82

    Article  PubMed  CAS  Google Scholar 

  27. Vaajasaari H, Ilmarinen T, Juuti-Uusitalo K, Rajala K, Onnela N, Narkilahti S, Suuronen R, Hyttinen J, Uusitalo H, Skottman H (2011) Towards defined and xeno-free differentiation of functional human pluripotent stem cell–derived retinal pigment epithelial cells. Mol Vis 17:558–575

    PubMed  CAS  Google Scholar 

  28. Wegener J, Sieber M, Galla H-J (1996) Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. Biochem Biophys Methods 32(3):151–170

    Article  CAS  Google Scholar 

  29. Wegener J, Zink S, Rösen P, Galla H-J (1999) Use of electrochemical impedance measurements to monitor bb-adrenergic stimulation of bovine aortic endothelial cells. Eur J Physiol 437:925–934

    Article  CAS  Google Scholar 

  30. Wegener J, Hakvoort A, Galla H-J (2000) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853:115–124

    Article  PubMed  CAS  Google Scholar 

  31. Zhu D, Deng X, Spee C, Sonoda S, Hsieh CL, Barron E, Pera M, Hinton DR et al (2011) Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotes retinal progenitor cell survival. Invest Ophthalmol Vis Sci 52(3):1573–1585

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Raimo Peurakoski for his technical help with the construction of the measurement system. We would like to express our deep gratitude to Outi Melin, Hanna Koskenaho, Elina Konsén and Heidi Hongisto for their assistance with the cell cultures. For this study’s financial support, the authors would like to thank TUT’s graduate school, the Finnish Cultural Foundation, the Emil Aaltonen Foundation, the Tampere Graduate Program in Biomedicine and Biotechnology, BioneXt Tampere, and the Academy of Finland (grant numbers 122959, 218050, and 137801). We are also indebted to Professor Markku Mäki’s group at the University of Tampere for the equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niina Onnela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onnela, N., Savolainen, V., Juuti-Uusitalo, K. et al. Electric impedance of human embryonic stem cell-derived retinal pigment epithelium. Med Biol Eng Comput 50, 107–116 (2012). https://doi.org/10.1007/s11517-011-0850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0850-z

Keywords

Navigation