Skip to main content

Advertisement

Log in

The analysis of forces needed for the suturing of elliptical skin wounds

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

There is a lack of information regarding the forces required for suturing human wounds. The knowledge of suturing forces serves as complementary information for setting up the limiting geometry when using tissue adhesives and it might also be used in robot-assisted surgery. The main purpose of this paper was to evaluate the forces required for suturing selected skin wounds. An elliptical wound was chosen for our study. In this study a numerical analysis and in vivo experiments were performed. Regarding the numerical models, the maximum forces occurred in the middle of the elliptical wound in all cases. In the case of highest pre-stress used in these analyses the maximal force varied from 0.5 N for the smallest wound (30 × 5 mm) to 1.5 N for the largest wound (30 × 15 mm). The maximum peak force for the wound with a size of 46 × 13 mm was 3.2 N. The minimum peak force for the wound with a size of 36 × 5 mm was 1.1 N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexander H, Cook TH (1977) Accounting for natural tension in the mechanical testing of human skin. J Invest Dermatol 69:310–314

    Article  PubMed  CAS  Google Scholar 

  2. Bann S, Khan M, Hernandez J (2003) Robotics in surgery. J Am Coll Surg 96:784–795

    Article  Google Scholar 

  3. Bischoff J, Arruda E, Grosh K (2000) Finite element modelling of human skin using an isotropic, non-linear elastic constitutive model. J Biomech 33:645–652

    Article  PubMed  CAS  Google Scholar 

  4. Cacou C, Anderson JM, Muir I (1994) Measurements of closing force of surgical wounds and relation to the appearance of resultant scars. Med Biol Eng Comp 32:638–642

    Article  CAS  Google Scholar 

  5. Cacou C, Muir I (1995) Effects of plane mechanical forces in wound healing in humans. J R Coll Surg Edinb 40:125–131

    Google Scholar 

  6. Camarillo D, Krummel T, Salisbury K (2004) Robotic technology in surgery: past, present and future. Am J Surg 188:2S–15S

    Article  PubMed  Google Scholar 

  7. Capek L, Lochman Z, Jacquet E, Dzan L (2010) Biaxial extensometer for mesuring of the human skin anisotropy in vivo. In: 5th IEEE international conference, Cairo, Egypt, 83–85

  8. Cavicchi A, Gambarotta L, Massabo R (2009) Computational modelling of reconstructive surgery: the effects of the natural tension on skin wrinkling. Finite Elem Anal Des 45:519–529

    Article  Google Scholar 

  9. Chandra V, Nehra D, Parent R, Woo R, Reyes R, Hernandez-Boussard T, Dutta S (2010) A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery 47:830–839

    Article  Google Scholar 

  10. Chaudry H, Bukiet B, Siegel M, Findley T, Ritter AB, Guzelsu N (1998) Optimal patterns for suturing wounds. J Biomech 31:653–662

    Article  Google Scholar 

  11. Danielson DA, Natarajan S (1975) Tension field theory and the stress in stretched skin. J Biomech 8:135–142

    Article  PubMed  CAS  Google Scholar 

  12. Diridollou S, Black D, Lagarde M, Gall Y, Berson M, Vabre V, Patat F, Vaillant L (2000) Sex and site dependent variations in the thickness and mechanical properties of human skin in vivo. Int J Cosmet Sci 22:421–435

    PubMed  CAS  Google Scholar 

  13. Flynn C (2010) Finite element models of wound closure. J Tissue Viability 19:137–149

    Article  PubMed  Google Scholar 

  14. Frick T, Marucci D, Cartmill J, Martin C, Walsh W (2001) Resistance forces acting on suture needles. J Biomech 34:1335–1340

    Article  PubMed  CAS  Google Scholar 

  15. Handschel JGK, Depprich RA, Dirksen D, Runte C, Zimmermann A, Kübler NR (2006) A prospective comparison of octyl-2-cyanoacrylate and suture in standardized facial wounds. Oral Maxillofac Surg 35:318–323

    Article  CAS  Google Scholar 

  16. Holzapfel G, Ogden R (2003) Biomechanics of soft tissue in cardiovascular systems. Springer, Udine

    Google Scholar 

  17. Jacquet E, Josse G, Khatyr F, Garcin C (2008) A new experimental method for measuring skin’s natural tension. Skin Res Technol 14:1–7

    PubMed  Google Scholar 

  18. Kirby SD, Wang B, To CWS, Lampe HB (1998) Non-linear, three- dimensional finite-element model of skin biomechanics. J Otolaryngol 27:153–160

    PubMed  CAS  Google Scholar 

  19. Larrabee WF Jr, Galt JA (1986) A finite element model of skin Deformation. III. The finite element model. The Laryngoscope 96:413–419

    PubMed  Google Scholar 

  20. Lim J, Hong J, Chen W, Weerasooriya T (2011) Mechanical response of pig skin under dynamic tensile loading. J Imp Eng 38:130–135

    Article  Google Scholar 

  21. Lott-Crumpler D, Chaudry HR (2001) Optimal patterns for suturing wounds of complex shapes to foster healing. J Biomech 34:51–58

    Article  PubMed  CAS  Google Scholar 

  22. Macpherson N, Lee S (2010) Effect of different suture techniques on tension dispersion in cutaneous wounds: a pilot study. Australas J Dermatol 51(4):263–267

    Article  PubMed  Google Scholar 

  23. Marescaux J, Rubino F (2003) The ZEUS robotic system: experimental and clinical applications. Surg Clin N Am 83:1305–1315

    Article  PubMed  Google Scholar 

  24. Melis P, Noorlander M, Bos K (2001) Tension decrease during skin stretching in undermined versus not undermined skin: an experimental study in piglets. Plast Reconstr Surg 107:1201–1205

    Article  PubMed  CAS  Google Scholar 

  25. Nguyen C, Vu-Khanh T (2009) Mechanics and mechanisms of puncture by medical needles. Proc Eng 1:139–142

    Article  Google Scholar 

  26. O′Callaghan P, Jones M, James D, Leadbeatter S, Holt C, Nokes L (1999) Dynamics of stab wounds: force required for penetration of various cadaveric human tissues. Forensic Sci Int 104:173–178

    Article  PubMed  Google Scholar 

  27. Ogawa R, Akaishi S, Huang C, Dohi T, Aoki M, Omori Y, Koike S, Kobe K, Akimoto M, Hyakusoku H (2011) Clinical applications of basic research that shows reducing skin tension could prevent and treat abnormal scarring: the importance of fascial/subcutaneous tensile reduction sutures and flap surgery for keloid and hypertrophic scar reconstruction. J Nippon Med Sch 78(2):68–76

    Article  Google Scholar 

  28. Reiley C, Akinbiyi T, Burschka D, Chang D, Okamura A, Yuh D (2008) Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg 135:196–201

    Article  PubMed  Google Scholar 

  29. Retel V, Vescovo P, Jacquet E, Trivaudey F, Varchon D, Burtheret A (2001) Non-linear model of skin mechanical behaviour analysis with finite element method. Skin Res Technol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  30. Shapiro AJ, Dinsmore RC, North JH Jr (2001) Tensile strength of wound closure with cyanoacrylate glue. Am Surgeon 67:1113–1115

    PubMed  CAS  Google Scholar 

  31. Singer A, Quinn J, Hollander J, Clark RE (2002) Closure of lacerations and incisions with octylcyanoacrylate. A multicenter randomized controlled trial. Surgery 131:270–276

    Article  PubMed  Google Scholar 

  32. Singer A, Quinn J, Hollander J (2008) The cyanoacrylate topical skin adhesives. Am J Emerg Med 26:490–496

    Article  PubMed  Google Scholar 

  33. Szabo Z, Avery J, Sandor A, Litwin D (2000) Suturing and knotting techniques for thoracoscopic cardiac surgery. Surg Clin N Am 80:1555–1574

    Article  PubMed  CAS  Google Scholar 

  34. Yoshida H, Tsutsumi S, Mizunuma M, Yanai A (2000) Three-dimensional finite element analysis of skin suture. Part 1: spindle model and S-shaped modified model. Med Eng Phys 22:481–485

    Article  PubMed  CAS  Google Scholar 

  35. Yoshida H, Tsutsumi S, Mizunuma M, Yanai A (2001) A surgical simulation system of skin sutures using a three-dimensional finite element method. Clin Biomech 6:621–626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Capek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capek, L., Jacquet, E., Dzan, L. et al. The analysis of forces needed for the suturing of elliptical skin wounds. Med Biol Eng Comput 50, 193–198 (2012). https://doi.org/10.1007/s11517-011-0857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0857-5

Keywords

Navigation