Skip to main content
Log in

Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

For blood perfusion monitoring, laser speckle contrast (LSC) imaging is a recent non-contact technique that has the characteristic of delivering noise-like speckled images. To exploit LSC images for quantitative physiological measurements, we developed an approach that implements controlled spatial averaging to reduce the detrimental impact of the noise and improve measurement sensitivity. By this approach, spatial resolution and measurement sensitivity can be traded-off in a flexible way depending on the quantitative prospect of the study. As an application, detectability of the cardiac activity from LSC images of forearm using power spectrum analysis is studied through the construction of spatial activity maps offering a window on the blood flow perfusion and its regional distribution. Comparisons with results obtained with signals of laser Doppler flowmetry probes are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aizu Y, Asakura T (1991) Bio-speckle phenomena and their application to the evaluation of blood flow. Opt Laser Technol 23:205–219

    Article  Google Scholar 

  2. Cai H, Rohman H, Larsson SE, Öberg PÅ (1996) Laser Doppler flowmetry: characteristics of a modified single-fibre technique. Med Biol Eng Comput 34(1):2–8

    Article  PubMed  CAS  Google Scholar 

  3. de Mul F, Blaauw J, Aarnoudse JG, Smit A, Rakhorst G (2005) A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring. IEEE Trans Biomed Eng 52:184–190

    Article  PubMed  Google Scholar 

  4. Draijer M, Hondebrink E, Leeuwen T, Steenbergen W (2009) Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci 24:639–651

    Article  PubMed  Google Scholar 

  5. Humeau A, Steenbergen W, Nilsson H, Strömberg T (2007) Laser Doppler perfusion monitoring and imaging: novel approaches. Med Biol Eng Comput 45(5):421–435

    Article  PubMed  Google Scholar 

  6. Humeau A, Buard B, Mahé G, Chapeau-Blondeau F, Rousseau D, Abraham P (2010) Multifractal analysis of heart rate variability and laser Doppler flowmetry fluctuations: comparison of results from different numerical methods. Phys Med Biol 55(20):6279–6297

    Article  PubMed  Google Scholar 

  7. Mahé G, Rousseau P, Durand S, Bricq S, Leftheriotis G, Abraham P (2011) Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces. Microvasc Res 81:183–188

    Article  PubMed  Google Scholar 

  8. Mahé G, Haj-Yassin F, Rousseau P, Humeau A, Durand S, Leftheriotis G, Abraham P (2011) Distance between laser head and skin does not influence skin blood flow values recorded by laser speckle imaging. Microvasc Res 82(3):439–442

    Article  PubMed  Google Scholar 

  9. Mahé G, Humeau-Heurtier A, Durand S, Leftheriotis G, Abraham P (2012) Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging. Circ Cardiovasc Imaging 5(1):155–163

    Article  PubMed  Google Scholar 

  10. Nilsson G, Tenland T, Oberg P (1980) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans Biomed Eng 27:12–19

    Article  PubMed  CAS  Google Scholar 

  11. O’Doherty J, McNamara P, Clancy N, Enfield J, Leahy M (2009) Comparison of instruments for investigation of microcirculatory blood flow and red blood flow and red blood cell concentration. J Biomed Opt 14:034025

    Article  PubMed  Google Scholar 

  12. Rousseau P, Mahé G, Fromy B, Ducluzeau PH, Saumet JL, Abraham P (2009) Axon-reflex cutaneous vasodilatation is impaired in type 2 diabetic patients receiving chronic low-dose aspirin. Microvasc Res 78(2):218–223

    Article  PubMed  CAS  Google Scholar 

  13. Rousseau P, Mahé G, Haj-Yassin F, Durand S, Humeau A, Leftheriotis G, Abraham P (2011) Increasing the “region of interest” and “time of interest”, both reduce the variability of blood flow measurements using laser speckle contrast imaging. Microvasc Res 82:1–4

    Article  Google Scholar 

  14. Roustit M, Blaise S, Millet C, Cracowski JL (2010) Reproducibility and methodological issues of skin post-occlusive and thermal hyperemia assessed by single-point laser Doppler flowmetry. Microvasc Res 79:102–108

    Article  PubMed  CAS  Google Scholar 

  15. Roustit M, Millet C, Blaise S, Dufournet B, Cracowski JL (2010) Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvasc Res 80:505–511

    Article  PubMed  CAS  Google Scholar 

  16. Roustit M, Blaise S, Millet C, Cracowski JL (2011) Impaired transient vasodilation and increased vasoconstriction to digital local cooling in primary Raynaud’s phenomenon. Am J Physiol Heart Circ Physiol 301(2):324–330

    Article  Google Scholar 

  17. Sheppard LW, Vuksanović V, McClintock PV, Stefanovska A (2011) Oscillatory dynamics of vasoconstriction and vasodilation identified by time-localized phase coherence. Phys Med Biol 56(12):3583–3601

    Article  PubMed  CAS  Google Scholar 

  18. Shiogai Y, Stefanovska A, McClintock PVE (2010) Nonlinear dynamics of cardiovascular ageing. Phys Rep 488:51–110

    Article  PubMed  CAS  Google Scholar 

  19. Stefanovska A, Lunchinsky D, Mc Clintock P (2001) Modelling couplings among the oscillators of the cardiovascular system. Physiol Meas 22:551–564

    Article  PubMed  CAS  Google Scholar 

  20. Stefanovska A, Lotric MB, Strle S, Haken H (2001) The cardiovascular system as coupled oscillators? Physiol Meas 22:535–550

    Article  PubMed  CAS  Google Scholar 

  21. Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58

    Article  PubMed  CAS  Google Scholar 

  22. Stewart C, Frank R, Forrester K, Tulip J, Lindsay R, Bray R (2005) Comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging. Burns 31:744–752

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Bricq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bricq, S., Mahé, G., Rousseau, D. et al. Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis. Med Biol Eng Comput 50, 1017–1023 (2012). https://doi.org/10.1007/s11517-012-0919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0919-3

Keywords

Navigation