Skip to main content
Log in

Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Computational models have been be used to estimate the electric and magnetic fields induced by transcranial magnetic stimulation (TMS) and can provide valuable insights into the location and spatial distribution of TMS stimulation. However, there has been little translation of these findings into practical TMS research. This study uses the International 10-20 EEG electrode placement system to position a standard figure-of-eight TMS coil over 13 commonly adopted targets. Using a finite element method and an anatomically detailed and realistic head model, this study provides the first pictorial and numerical atlas of TMS-induced electric fields for a range of coil positions. The results highlight the importance of subject-specific gyral folding patterns and of local thickness of subarachnoid cerebrospinal fluid (CSF). Our modelling shows that high electric fields occur primarily on the peaks of those gyri which have only a thin layer of CSF above them. These findings have important implications for inter-individual generalizability of the TMS-induced electric field. We propose that, in order to determine with accuracy the site of stimulation for an individual subject, it is necessary to solve the electric field distribution using subject-specific anatomy obtained from a high-resolution imaging modality such as MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107

    Article  PubMed  CAS  Google Scholar 

  2. Thickbroom GW (2007) Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res 180(4):583–593

    Article  PubMed  Google Scholar 

  3. Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1(1):73–80

    Article  PubMed  CAS  Google Scholar 

  4. Hallett M (2007) Transcranial magnetic stimulation: a primer. Neuron 55(2):187–199

    Article  PubMed  CAS  Google Scholar 

  5. O’Shea J, Walsh V (2007) Transcranial magnetic stimulation. Curr Biol 17(6):R196–R199

    Article  PubMed  Google Scholar 

  6. Wassermann EM, Wang B, Zeffiro TA, Sadato N, Pascual-Leone A, Toro C et al (1996) Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. NeuroImage 3(1):1–9

    Article  PubMed  CAS  Google Scholar 

  7. Amassian VE, Maccabee PJ, Cracco RQ, Cracco JB, Somasundaram M, Rothwell JC et al (1994) The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation. Electroencephalogr Clin Neurophysiol 93(1):21–26

    Article  PubMed  CAS  Google Scholar 

  8. Maccabee PJ, Amassian VE, Eberle LP, Cracco RQ (1993) Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. J Physiol 460:201–219

    PubMed  CAS  Google Scholar 

  9. Cohen LG, Roth BJ, Nilsson J, Dang N, Panizza M, Bandinelli S et al (1990) Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalography and Clinical Neurophysiology. 75(4):350–357

    Article  CAS  Google Scholar 

  10. Ueno S, Tashiro T, Harada K (1988) Localized stimulation of neural tissue in the brain by means of a paired configuration of time-varying electric fields. J Appl Phys 64(10):5862–5864

    Article  Google Scholar 

  11. Salinas FS, Lancaster JL, Fox PT (2009) 3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method. Phys Med Biol 54(12):3631–3647

    Article  PubMed  CAS  Google Scholar 

  12. Stokes MG, Chambers CD, Gould IC, English T, McNaught E, McDonald O et al (2007) Distance-adjusted motor threshold for transcranial magnetic stimulation. Clin Neurophysiol 118(7):1617–1625

    Article  PubMed  Google Scholar 

  13. Toschi N, Welt T, Guerrisi M, Keck ME (2008) A reconstruction of the conductive phenomena elicited by transcranial magnetic stimulation in heterogeneous brain tissue. Phys Med. 24(2):80–86

    Article  PubMed  Google Scholar 

  14. Barker AT, Garnham CW, Freeston IL (1991) Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output. Electroencephalogr Clin Neurophysiol Suppl 43:227–237

    PubMed  CAS  Google Scholar 

  15. Jalinous R (1991) Technical and practical aspects of magnetic nerve stimulation. J Clin Neurophysiol 8(1):10–25

    Article  PubMed  CAS  Google Scholar 

  16. Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 112(2):250–258

    Article  CAS  Google Scholar 

  17. Wolf SL, Butler AJ, Campana GI, Parris TA, Struys DM, Weinstein SR et al (2004) Intra-subject reliability of parameters contributing to maps generated by transcranial magnetic stimulation in able-bodied adults. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 115(8):1740–1747

    Article  Google Scholar 

  18. Dubach P, Guggisberg AG, Rösler KM, Hess CW, Mathis J (2004) Significance of coil orientation for motor evoked potentials from nasalis muscle elicited by transcranial magnetic stimulation. Clin Neurophysiol 115(4):862–870

    Article  PubMed  Google Scholar 

  19. Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA, Sham TMS (2001) Intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry 49(5):460–463

    Article  PubMed  CAS  Google Scholar 

  20. Wagner T, Gangitano M, Romero R, Théoret H, Kobayashi M, Anschel D et al (2004) Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain. Neurosci Lett 354(2):91–94

    Article  PubMed  CAS  Google Scholar 

  21. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2004) Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 19(7):1950–1962

    Article  PubMed  Google Scholar 

  22. Bohning DE, Shastri A, Nahas Z, Lorberbaum JP, Andersen SW, Dannels WR et al (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33(6):336–340

    Article  PubMed  CAS  Google Scholar 

  23. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17(9):3178–3184

    PubMed  CAS  Google Scholar 

  24. Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86(4):1983–1990

    PubMed  CAS  Google Scholar 

  25. Salinas FS, Szabo CA, Zhang W, Jones L, Leland MM, Wey H-Y et al (2011) Functional neuroimaging of the baboon during concurrent image-guided transcranial magnetic stimulation. Neuroimage 57(4):1393–1401

    Article  PubMed  Google Scholar 

  26. Roth BJ, Cohen LG, Hallett M (1991) The electric field induced during magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 43:268–278

    PubMed  CAS  Google Scholar 

  27. Roth BJ, Saypol JM, Hallett M, Cohen LG (1991) A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalogr Clin Neurophysiol 81(1):47–56

    Article  PubMed  CAS  Google Scholar 

  28. Tofts PS (1990) The distribution of induced currents in magnetic stimulation of the nervous system. Phys Med Biol 35(8):1119–1128

    Article  PubMed  CAS  Google Scholar 

  29. Cohen D, Cuffin BN (1991) Developing a more focal magnetic stimulator. Part I: some basic principles. J Clin Neurophysiol 8(1):102–111

    Article  PubMed  CAS  Google Scholar 

  30. Ravazzani P, Ruohonen J, Grandori F, Tognola G (1996) Magnetic stimulation of the nervous system: induced electric field in unbounded, semi-infinite, spherical, and cylindrical media. Ann Biomed Eng 24(5):606–616

    Article  PubMed  CAS  Google Scholar 

  31. Wagner T, Zahn M, Grodzinsky AJ, Pascual-Leone A (2004) Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng 51(9):1586–1598

    Article  PubMed  Google Scholar 

  32. De Lucia M, Parker GJ, Embleton K, Newton JM, Walsh V (2007) Diffusion tensor MRI-based estimation of the influence of brain tissue anisotropy on the effects of transcranial magnetic stimulation. NeuroImage 36(4):1159–1170

    Article  PubMed  Google Scholar 

  33. Miranda PC, Hallett M, Basser PJ (2003) The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng 50(9):1074–1085

    Article  PubMed  Google Scholar 

  34. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme Medical Publishers, New York

    Google Scholar 

  35. Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E et al (2010) The Virtual Family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 55(2):N23–N38

    Article  PubMed  Google Scholar 

  36. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41(11):2271–2293

    Article  PubMed  CAS  Google Scholar 

  37. Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S et al (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the International 10–20 system oriented for transcranial functional brain mapping. NeuroImage 21(1):99–111

    Article  PubMed  Google Scholar 

  38. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28(1):22–29

    Article  PubMed  Google Scholar 

  39. Hoffman RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachid F, Carroll K et al (2003) Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch Gen Psychiatry 60(1):49–56

    Article  PubMed  Google Scholar 

  40. Lee KH, Egleston PN, Brown WH, Gregory AN, Barker AT, Woodruff PW (2007) The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci 19(1):147–157

    Article  PubMed  Google Scholar 

  41. Theoret H, Haque J, Pascual-Leone A (2001) Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett 306(1–2):29–32

    Article  PubMed  CAS  Google Scholar 

  42. Barker AT (1999) The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:3–21

    PubMed  CAS  Google Scholar 

  43. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I Literature survey. Phys Med Biol 41(11):2231–2249

    Article  PubMed  CAS  Google Scholar 

  44. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41(11):2251–2269

    Article  PubMed  CAS  Google Scholar 

  45. Miranda PC, Correia L, Salvador R, Basser PJ (2007) Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields. Phys Med Biol 52(18):5603–5617

    Article  PubMed  CAS  Google Scholar 

  46. Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117(7):1623–1629

    Article  PubMed  Google Scholar 

  47. Good CD, Johnsrude I, Ashburner J, Henson RNA, Friston KJ, Frackowiak RSJ (2001) Cerebral Asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage 14(3):685–700

    Article  PubMed  CAS  Google Scholar 

  48. Koski L, Schrader LM, Wu AD, Stern JM (2005) Normative data on changes in transcranial magnetic stimulation measures over a ten hour period. Clin Neurophysiol 116(9):2099–2109

    Article  PubMed  Google Scholar 

  49. Thielscher A, Opitz A, Windhoff M (2011) Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage 54(1):234–243

    Article  PubMed  Google Scholar 

  50. Dell’Acqua F, Simmons A, Williams SCR, Catani M (2012) Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Human Brain Mapp. doi:10.1002/hbm.22080

  51. Haldar JP, Wedeen VJ, Nezamzadeh M, Dai G, Weiner MW, Schuff N, et al. (2012) Improved diffusion imaging through SNR-enhancing joint reconstruction. Magn Reson Med. doi:10.1002/mrm.24229

  52. Tournier J-D, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65(6):1532–1556

    Article  PubMed  Google Scholar 

  53. Veraart J, Poot DHJ, Van Hecke W, Blockx I, Van der Linden A, Verhoye M et al (2011) More accurate estimation of diffusion tensor parameters using diffusion kurtosis imaging. Magn Reson Med 65(1):138–145

    Article  PubMed  Google Scholar 

  54. Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A (2011) How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. Neuroimage 58(3):849–859

    Google Scholar 

  55. Balslev D, Braet W, McAllister C, Miall RC (2007) Inter-individual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex. J Neurosci Methods 162(1–2):309–313

    Article  PubMed  Google Scholar 

  56. Lioumis P, Kičić D, Savolainen P, Mäkelä JP, Kähkönen S (2009) Reproducibility of TMS-evoked EEG responses. Hum Brain Mapp 30(4):1387–1396

    Article  PubMed  Google Scholar 

  57. Sack AT, Cohen Kadosh R, Schuhmann T, Moerel M, Walsh V, Goebel R (2009) Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J Cogn Neurosci 21(2):207–221

    Article  PubMed  Google Scholar 

  58. Herwig U, Schonfeldt-Lecuona C, Wunderlich AP, von Tiesenhausen C, Thielscher A, Walter H et al (2001) The navigation of transcranial magnetic stimulation. Psychiatry Res 108(2):123–131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J. Bijsterbosch is supported by a Medical Research Council Ph.D. studentship. We thank Dr. Pedro Crespo Valero from SEMCAD for his assistance in optimizing the SEMCAD Talairach tool for use in this work. A.T.B. and J.D.B. contributed equally to this work and jointly discussed the results and implications. A.T.B. conceived the study, designed and ran the models and commented extensively on the manuscript at all stages. J.D.B. contributed to the design of the models, designed and performed the post-processing of the modelling data and wrote the manuscript. K-H.L. and P.W.R.W. supervised J.D.B. and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janine D. Bijsterbosch or Anthony T. Barker.

Additional information

J. D. Bijsterbosch and A. T. Barker contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bijsterbosch, J.D., Barker, A.T., Lee, KH. et al. Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets. Med Biol Eng Comput 50, 671–681 (2012). https://doi.org/10.1007/s11517-012-0922-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0922-8

Keywords

Navigation