Skip to main content

Advertisement

Log in

Using three-dimensional multigrid-based snake and multiresolution image registration for reconstruction of cranial defect

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In cranioplasty, neurosurgeons use bone grafts to repair skull defects. To ensure the protection of intracranial tissues and recover the original head shape for aesthetic purposes, a custom-made pre-fabricated prosthesis must match the cranial incision as closely as possible. In our previous study (Liao et al. in Med Biol Eng Comput 49:203–211, 2011), we proposed an algorithm consisting of the 2D snake and image registration using the patient’s own diagnostic low-resolution and defective high-resolution computed tomography (CT) images to repair the impaired skull. In this study, we developed a 3D multigrid snake and employed multiresolution image registration to improve the computational efficiency. After extracting the defect portion images, we designed an image-trimming process to remove the bumped inner margin that can facilitate the placement of skull implants without manual trimming during surgery. To evaluate the performance of the proposed algorithm, a set of skull phantoms were manufactured to simulate six different conditions of cranial defects, namely, unilateral, bilateral, and cross-midline defects with 20 or 40 % skull defects. The overall image processing time in reconstructing the defect portion images can be reduced from 3 h to 20 min, as compared with our previous method. Furthermore, the reconstruction accuracies using the 3D multigrid snake were superior to those using the 2D snake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agner C, Dujovny M, Evenhouse R, Charbel FT, Sadler L (1998) Stereolithography for posterior fossa cranioplasty. Skull Base Surg 8:81–86

    Article  PubMed  CAS  Google Scholar 

  2. Barrett R (1994) Templates for the solution of linear systems: building blocks for iterative methods. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  3. Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  4. Bronstein MM, Bronstein AM, Kimmel R, Yavneh I (2006) Multigrid multidimensional scaling. Numer Linear Algebr Appl 13:149–171

    Article  Google Scholar 

  5. Carr JC, Fright WR, Beatson RK (1997) Surface interpolation with radial basis functions for medical imaging. IEEE Trans Med Imaging 16:96–107

    Article  PubMed  CAS  Google Scholar 

  6. Chong CS, Lee HP, Kumar AS (2006) Automatic hole repairing for cranioplasty using Bezier surface approximation. J Craniofac Surg 17:344–352

    Article  PubMed  Google Scholar 

  7. Cremers D, Tischhäuser F, Weickert J, Schnörr C (2002) Diffusion snakes: introducing statistical shape knowledge into the Mumford–Shah functional. Int J Comput Vis 50:295–313

    Article  Google Scholar 

  8. Dean D, Min K-J (2003) Deformable templates for preoperative computer-aided design and fabrication of large cranial implants. Int Congr Ser 1256:710–715

    Article  Google Scholar 

  9. D’Urso PS, Effeney DJ, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Tomlinson FH (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53:200–204

    Article  PubMed  Google Scholar 

  10. Frohn-Schauf C, Henn S, Witsch K (2004) Nonlinear multigrid methods for total variation image denoising. Comput Vis Sci 7:199–206

    Google Scholar 

  11. Garland M, Heckbert PS (1997) Surface simplification using quadric error metrics. In: Owen GS, Whitted T, Mones-Hattal B (eds) Proceedings of the 24th annual conference on computer graphics and interactive techniques, Los Angeles. ACM Press/Addison-Wesley Publishing Co., New York, pp 209–216

    Google Scholar 

  12. Gonzalez RC, Woods RE (2008) Digital image processing. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  13. Gopakumar S (2004) RP in medicine: a case study in cranial reconstructive surgery. Rapid Prototyp J 10:207–221

    Article  Google Scholar 

  14. Haber E, Modersitzki J (2006) A multilevel method for image registration. SIAM J Sci Comput 27:1594–1607

    Article  Google Scholar 

  15. Han X, Xu C, Prince JL (2007) Fast numerical scheme for gradient vector flow computation using a multigrid method. IET Image Process 1:48–55

    Article  Google Scholar 

  16. Kass M, Witkin A, Terzopoulos D (1987) Snakes: active contour models. Int J Comput Vis 1:321–331

    Article  Google Scholar 

  17. Kucukyuruk B, Abuzayed B, Sanus G, Aydin S, Aydin S (2011) Cranioplasty: review of materials and techniques. J Neurosci Rural Pract 2:162–167

    Article  PubMed  Google Scholar 

  18. Lee S-C, Wu C-T, Lee S-T, Chen P-J (2009) Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci 16:56–63

    Article  PubMed  CAS  Google Scholar 

  19. Liao Y-L, Sun Y-N, Lu C-F, Wu Y-T, Wu C-T, Lee S-T, Lee J-D (2010) Skull-based registration of intra-subject CT images: the effects of different resolutions and partial contents. In: Mahadevan V, Zhou J (eds) Proceeding of the 2nd international con-ference on bioinformatics and biomedical technology (ICBBT). Research Publishing Services, Singapore, pp 269–272

    Google Scholar 

  20. Liao Y-L, Lu C-F, Sun Y-N, Wu C-T, Lee J-D, Lee S-T, Wu Y-T (2011) Three-dimensional reconstruction of cranial defect using active contour model and image registration. Med Biol Eng Comput 49:203–211

    Article  PubMed  Google Scholar 

  21. Liao Y-L, Sun Y-N, Guo W-Y, Chou Y-H, Hsieh J-C, Wu Y-T (2011) A hybrid strategy to integrate surface-based and mutual-information-based methods for co-registering brain SPECT and MR images. Med Biol Eng Comput 49:671–685

    Article  PubMed  Google Scholar 

  22. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21:163–169

    Article  Google Scholar 

  23. Luebke DP (2001) A developer’s survey of polygonal simplification algorithms. IEEE Comput Graph Appl 21:24–35

    Article  Google Scholar 

  24. Maes F, Vandermeulen D, Suetens P (1999) Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Med Image Anal 3:373–386

    Article  PubMed  CAS  Google Scholar 

  25. Maravelakis E, David K, Antoniadis A, Manios A, Bilalis N, Papaharilaou Y (2008) Reverse engineering techniques for cranioplasty: a case study. J Med Eng Technol 32:115–121

    Article  PubMed  CAS  Google Scholar 

  26. Melax S (1998) A simple, fast, and effective polygon reduction algorithm. Game Dev 5:44–49

    Google Scholar 

  27. Movassaghi K, Ver Halen J, Ganchi P, Amin-Hanjani S, Mesa J, Yaremchuk MJ (2006) Cranioplasty with subcutaneously preserved autologous bone grafts. Plast Reconstr Surg 117:202–206

    Article  PubMed  CAS  Google Scholar 

  28. Papandreou G, Maragos P (2007) Multigrid geometric active contour models. IEEE Trans Image Process 16:229–240

    Article  PubMed  Google Scholar 

  29. Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18:737–752

    Article  PubMed  CAS  Google Scholar 

  30. Pluim JPW, Maintz JBA, Viergever MA (2001) Mutual information matching in multiresolution contexts. Image Vis Comput 19:45–52

    Article  Google Scholar 

  31. Press WH (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  32. Shi L, Yu Y, Bell N, Feng W-W (2006) A fast multigrid algorithm for mesh deformation. ACM Trans Graph 25:1108–1117

    Article  Google Scholar 

  33. Taub PJ, Rudkin GH, Clearihue WJ, Miller TA (2003) Prefabricated alloplastic implants for cranial defects. Plast Reconstr Surg 111:1233–1240

    Article  PubMed  Google Scholar 

  34. Terzopoulos D (1986) Image analysis using multigrid relaxation methods. IEEE Trans Pattern Anal Mach Intell 8:129–139

    Article  PubMed  CAS  Google Scholar 

  35. Wesseling P (2004) An Introduction to Multigrid Methods. R.T. Edwards, Philadelphia

    Google Scholar 

  36. Wu T, Engelhardt M, Fieten L, Popovic A, Radermacher K (2006) Anatomically constrained deformation for design of cranial implant: methodology and validation. In: Larsen R, Nielsen M, Sporring J (eds) 9th international conference on medical image computing and computer assisted intervention (MICCAI), LNCS 4190. Springer, Berlin, pp 9–16

    Google Scholar 

  37. Wu WZ, Zhang Y, Li H, Wang WS (2009) Fabrication of repairing skull bone defects based on the rapid prototyping. J Bioact Compat Polym 24:125–136

    Article  CAS  Google Scholar 

  38. Yamashima T (1989) Cranioplasty with hydroxylapatite ceramic plates that can easily be trimmed during surgery. Acta Neurochir 96:149–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express appreciation to Fu-Jung Chen in Medical Augmented Reality Research Center, Chang Gung Memorial Hospital for help acquiring the phantom data. Our gratitude also goes to E. William Thornton and Bill Thornton of Wallace Academic Editing for his assistance in English language editing. This work is funded by the Technology Development Program for Academia of Department of Industrial Technology, Ministry of Economic Affairs (97-EC-17-A-19-S1-035, 98-EC-17-A-19-S1-035, and 99-EC-17-A-19-S1-035), National Science Council (NSC100-2221-E-010-009, NSC98-2221-E-182-040-MY3, NSC100-2321-B-010-003, and NSC101-2221-E-010-004-MY2), NSC support for the Center for Dynamical Biomarkers and Translational Medicine, National Central University (NSC100-2911-I-008-001), and Brain Research Center, National Yang-Ming University and a grant from Ministry of Education, Aim for the Top University Plan (101AC-B902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Nien Sun or Yu-Te Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, YL., Lu, CF., Wu, CT. et al. Using three-dimensional multigrid-based snake and multiresolution image registration for reconstruction of cranial defect. Med Biol Eng Comput 51, 89–101 (2013). https://doi.org/10.1007/s11517-012-0972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0972-y

Keywords

Navigation