Skip to main content
Log in

In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error < 6.5 mm), and bi-planar in quantifying the rotation along bone longitudinal axis (error < 1.3°). These errors propagated to joint angles and translations differently depending on the alignment of the anatomical axes and the fluoroscopic reference frames. Internal-external rotation was the least accurate angle both with mono- (error < 4.4°) and bi-planar (error < 1.7°) setups, due to bone longitudinal symmetries. Results highlighted that accuracy for mono-planar in-plane pose parameters is comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acker S, Li R, Murray H, John PS, Banks S, Mu S, Wyss U, Deluzio K (2011) Accuracy of single-plane fluoroscopy in determining relative position and orientation of total knee replacement components. J Biomech 44(4):784–787

    Article  PubMed  Google Scholar 

  2. Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG (2010) Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech 43(7):1292–1301

    Article  PubMed  Google Scholar 

  3. Amiri S, Wilson DR, Masri BA, Sharma G, Anglin C (2011) A novel multi-planar radiography method for three dimensional pose reconstruction of the patellofemoral and tibiofemoral joints after arthroplasty. J Biomech 44(9):1757–1764

    Article  PubMed  Google Scholar 

  4. Baka N, de Bruijne M, van Walsum T, Kaptein B, Giphart J, Schaap M, Niessen W, Lelieveldt B (2012) Statistical shape model based femur kinematics from biplane fluoroscopy. IEEE Trans Med Imaging 31(8):1573–1583

    Google Scholar 

  5. Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Bio-Med Eng 43(6):638–649

    Article  CAS  Google Scholar 

  6. Benedetti M, Catani F, Leardini A, Pignotti E, Giannini S (1998) Data management in gait analysis for clinical applications. Clin Biomech 13(3):204–215

    Article  Google Scholar 

  7. Bey MJ, Kline SK, Tashman S, Zauel R (2008) Accuracy of biplane x-ray imaging combined with model-based tracking for measuring in vivo patellofemoral joint motion. J Orthop Surg Res 3(1):38

    Article  PubMed  Google Scholar 

  8. Bey MJ, Peltz CD, Ciarelli K, Kline SK, Divine GW, Van Holsbeeck M, Muh S, Kolowich PA, Lock TR, Moutzouros V (2011) In vivo shoulder function after surgical repair of a torn rotator cuff glenohumeral joint mechanics, shoulder strength, clinical outcomes, and their interaction. Am J Sports Med 39(10):2117–2129

    Article  PubMed  Google Scholar 

  9. Bey MJ, Zauel R, Brock SK, Tashman S (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng 128(4):604

    Article  PubMed  Google Scholar 

  10. Bingham J, Li G (2006) An optimized image matching method for determining in vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system. J Biomech Eng 128(4):588

    Article  PubMed  Google Scholar 

  11. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  PubMed  CAS  Google Scholar 

  12. Börlin N, Thien T, Kärrholm J (2002) The precision of radiostereometric measurements. Manual vs. digital measurements. J Biomech 35(1):69–79

    Article  PubMed  Google Scholar 

  13. Cappozzo A, Cappello A, Croce UD, Pensalfini F (1997) Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng 44(12):1165–1174

    Article  PubMed  CAS  Google Scholar 

  14. Conti G, Cristofolini L, Juszczyk M, Leardini A, Viceconti M (2008) Comparison of three standard anatomical reference frames for the tibia–fibula complex. J Biomech 41(16):3384–3389

    Article  PubMed  Google Scholar 

  15. Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res 331:107–117

    Article  PubMed  Google Scholar 

  16. Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38(2):241–253

    Article  PubMed  Google Scholar 

  17. Fregly BJ, Rahman HA, Banks SA (2005) Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. J Biomech Eng 127(4):692–699

    Article  PubMed  Google Scholar 

  18. Garling EH, Kaptein BL, Mertens B, Barendregt W, Veeger HEJ, Nelissen RGHH, Valstar ER (2007) Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. J Biomech 40(Suppl 1):S18–S24

    Article  PubMed  Google Scholar 

  19. Glaser D, Komistek RD, Cates HE, Mahfouz MR (2008) Clicking and squeaking: in vivo correlation of sound and separation for different bearing surfaces. J Bone Joint Surg 90(Suppl 4):112–120

    Article  PubMed  Google Scholar 

  20. Gronenschild E (1997) The accuracy and reproducibility of a global method to correct for geometric image distortion in the x-ray imaging chain. Med Phys 24(12):1875–1888

    Article  PubMed  CAS  Google Scholar 

  21. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144

    Article  PubMed  CAS  Google Scholar 

  22. Hanson RJ, Norris MJ (1981) Analysis of measurements based on the singular value decomposition. SIAM J Sci Stat Comput 2(3):363

    Article  Google Scholar 

  23. Hirokawa S, Abrar Hossain M, Kihara Y, Ariyoshi S (2008) A 3D kinematic estimation of knee prosthesis using X-ray projection images: clinical assessment of the improved algorithm for fluoroscopy images. Med Biol Eng Comput 46(12):1253–1262

    Article  PubMed  Google Scholar 

  24. Hurschler C, Seehaus F, Emmerich J, Kaptein BL, Windhagen H (2009) Comparison of the model-based and marker-based roentgen stereophotogrammetry methods in a typical clinical setting. J Arthroplast 24(4):594–606

    Article  Google Scholar 

  25. Illingworth J, Kittler J (1988) A survey of the Hough transform. Comput Vis Graph Image Process 44(1):87–116

    Article  Google Scholar 

  26. Kaptein BL, Valstar ER, Stoel BC, Reiber HC, Nelissen RG (2007) Clinical validation of model-based RSA for a total knee prosthesis. Clin Orthop Relat Res 464:205–209

    PubMed  Google Scholar 

  27. Kaptein BL, Valstar ER, Stoel BC, Rozing PM, Reiber JHC (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36(6):873–882

    Article  PubMed  CAS  Google Scholar 

  28. Kedgley AE, Jenkyn TR (2009) RSA calibration accuracy of a fluoroscopy-based system using nonorthogonal images for measuring functional kinematics. Med Phys 36(7):3176

    Article  PubMed  Google Scholar 

  29. Kuo M-Y, Tsai T-Y, Lin C-C, Lu T-W, Hsu H-C, Shen W-C (2011) Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand. Gait Posture 33(3):379–384

    Article  PubMed  Google Scholar 

  30. Lavallee S, Szeliski R (1995) Recovering the position and orientation of free-form objects from image contours using 3D distance maps. IEEE Trans Pattern Anal Mach Intell 17(4):378–390

    Article  Google Scholar 

  31. Li G, Van de Velde SK, Bingham JT (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41(7):1616–1622

    Article  PubMed  Google Scholar 

  32. Ludewig PM, Reynolds JE (2009) The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Therapy 39(2):90–104

    Google Scholar 

  33. Mahfouz MR, Hoff WA, Komistek RD, Dennis DA (2003) A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging 22(12):1561–1574

    Article  PubMed  Google Scholar 

  34. Miranda DL, Schwartz JB, Loomis AC, Brainerd EL, Fleming BC, Crisco JJ (2011) Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J Biomech Eng 133(12):121002–121008

    Article  PubMed  Google Scholar 

  35. Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA (2007) Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res 25(7):867–872

    Article  PubMed  Google Scholar 

  36. Okamoto N, Breslauer L, Hedley AK, Mizuta H, Banks SA (2011) In vivo knee kinematics in patients with bilateral total knee arthroplasty of 2 designs. J Arthroplast 26(6):914–918

    Article  Google Scholar 

  37. Önsten I, Berzins A, Shott S, Sumner DR (2001) Accuracy and precision of radiostereometric analysis in the measurement of THR femoral component translations: human and canine in vitro models. J Orthop Res 19(6):1162–1167

    Article  PubMed  Google Scholar 

  38. Ploegmakers MJM, Ginsel B, Meijerink HJ, de Rooy JW, de Waal Malefijt MC, Verdonschot N, Banks SA (2010) Physical examination and in vivo kinematics in two posterior cruciate ligament retaining total knee arthroplasty designs. The Knee 17(3):204–209

    Article  PubMed  CAS  Google Scholar 

  39. Seehaus F, Emmerich J, Kaptein BL, Windhagen H, Hurschler C (2009) Experimental analysis of model-based roentgen stereophotogrammetric analysis (MBRSA) on four typical prosthesis components. J Biomech Eng 131(4):041004

    Article  PubMed  Google Scholar 

  40. Söderkvist I, Wedin P-Å (1993) Determining the movements of the skeleton using well-configured markers. J Biomech 26(12):1473–1477

    Article  PubMed  Google Scholar 

  41. Stagni R, Fantozzi S, Cappello A, Leardini A (2005) Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin Biomech 20(3):320–329

    Article  Google Scholar 

  42. El-mihoub TA, Hopgood AA, Nolle L, Battersby A (2006) Hybrid genetic algorithms: a review. Eng Lett 13(2):124–137

    Google Scholar 

  43. Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73

    Article  PubMed  Google Scholar 

  44. Tersi L, Fantozzi S, Stagni R (2010) 3D elbow kinematics with mono-planar fluoroscopy: in silico evaluation. EURASIP J Adv Signal Process 2010, art ID 142989. doi:10.1155/2010/142989

  45. Tersi L, Fantozzi S, Stagni R, Cappello A (2012) Fluoroscopic analysis for the estimation of in vivo elbow kinematics: influence of 3D model. J Mech Med Biol 12(3), art ID 1250046. doi:10.1142/S0219519411004769

  46. Tersi L, Stagni R, Fantozzi S, Cappello A (2010) Genetic Algorithm as a robust method for the joint kinematics estimation with mono-planar 3D fluoroscopy. In: XVII ESB Conference, Edinburgh, Scotland, UK, July 2010

  47. Tsai T-Y, Lu T-W, Chen C-M, Kuo M-Y, Hsu H-C (2010) A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy. Med Phys 37(3):1273–1284

    Article  PubMed  Google Scholar 

  48. Tsai T-Y, Lu T-W, Kuo M-Y, Lin C-C (2011) Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J Biomech 44(6):1182–1188

    Article  PubMed  Google Scholar 

  49. Valstar ER, Gill R, Ryd L, Flivik G, Börlin N, Kärrholm J (2005) Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 76(4):563–572

    Article  PubMed  Google Scholar 

  50. Valstar ER, Nelissen RGHH, Reiber JHC, Rozing PM (2002) The use of Roentgen stereophotogrammetry to study micromotion of orthopaedic implants. ISPRS J Photogramm Remote Sens 56(5–6):376–389

    Article  Google Scholar 

  51. Wright AH (1991) Genetic algorithms for real parameter optimization. Found Genet Algorithms 1(1991):205–218

    Google Scholar 

  52. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35(4):543–548

    Article  PubMed  Google Scholar 

  53. Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Yoshikawa H, Tamura S (2004) Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans Med Imaging 23(5):602–612

    Article  PubMed  Google Scholar 

  54. You B-M, Siy P, Anderst W, Tashman S (2001) In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans Med Imaging 20(6):514–525

    Article  PubMed  CAS  Google Scholar 

  55. Zhu Z, Massimini DF, Wang G, Warner JJP, Li G (2012) The accuracy and repeatability of an automatic 2D–3D fluoroscopic image-model registration technique for determining shoulder joint kinematics. Med Eng Phys 34(9):1303–1309

    Article  PubMed  Google Scholar 

  56. Zuffi S, Leardini A, Catani F, Fantozzi S, Cappello A (1999) A model-based method for the reconstruction of total knee replacement kinematics. IEEE Trans Med Imaging 18(10):981–991

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Kamiar Aminian (Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland), Dr. Nicolas Theumann and Martine Bernasconi (Centre Hospitalier Universitaire Vaudois, CHUV, Lausanne, Switzerland) for the support given during data acquisition. This project was supported by the research grants “A multimodal approach to study the biomechanics of healthy and pathological knee” (PRIN 2008), and Swiss national foundation (SNSF 120136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Tersi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tersi, L., Barré, A., Fantozzi, S. et al. In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation. Med Biol Eng Comput 51, 257–265 (2013). https://doi.org/10.1007/s11517-012-0987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0987-4

Keywords

Navigation