Skip to main content
Log in

Effects of design parameters of total hip components on the impingement angle and determination of the preferred liner skirt shape with an adequate oscillation angle

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The oscillation angle (OsA), which is the sum of the impingement angles on the two sides when the prosthetic neck sways from the neutral axis of the acetabular cup to the liner rim, is one of the most important factors that can affect the range of motion of an artificial hip joint. The aim of this study was to determine the influence of total hip component design on the impingement angle. Our findings show that an increase in cup depth of the liner restricts the motion of the neck and results in a reduced impingement angle, while an increase in chamfer angle increases the impingement angle until it reaches a critical value when a further increase no longer results in an increase in impingement angle. The impingement angle is not only dependent on the head/neck ratio, but also on the head size itself. For most arbitrarily chosen cup depths and chamfer angles, the neck only impacts at one point on the liner. This study proposes a suitable combination of cup depth and chamfer angle and a preferred impact mode, which, if impingement does occur, enables the neck to impinge on the liner rim over a large area. Cup–neck combinations that have an adequate OsA with maximum femoral head coverage are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bader R, Scholz R, Steinhauser E, Zimmermann S, Busch R, Mittelmeier W (2004) The influence of head and neck geometry on stability of total hip replacement—a mechanical test study. Acta Orthop Scand 75(4):415–421

    Article  PubMed  Google Scholar 

  2. Bader R, Steinhauser E, Zimmermann S, Mittelmeier W, Scholz R, Busch R (2004) Differences between the wear couples metal-on-polyethylene and ceramic-on-ceramic in the stability against dislocation of total hip replacement. J Mater Sci Mater Med 15(6):711–718

    Article  PubMed  CAS  Google Scholar 

  3. Barrack RL, Thornberry RL, Ries MD, Lavernia C, Tozakoglou E (2001) The effect of component design on range of motion to impingement in total hip arthroplasty. Instr Course Lect 50:275–280

    PubMed  CAS  Google Scholar 

  4. Barrack RL (2003) Dislocation after total hip arthroplasty: implant design and orientation. J Am Acad Orthop Surg 11(2):89–99

    PubMed  Google Scholar 

  5. Besong A, Jin ZM, Fisher J (2000) Analysis of micro-separation and contact mechanics between the femoral head and the acetabular cup in artificial hip joint replacements. In: 47th annual meeting of the orthopaedic research society, p 1051

  6. Brien WB, Salvati EA, Wright TM, Burstein AH (1993) Dislocation following THA: comparison of two acetabular component designs. Orthopedics 16(8):869–872

    PubMed  CAS  Google Scholar 

  7. Burroughs BR, Hallstrom B, Golladay GJ, Hoeffel D, Harris WH (2005) Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes. J Arthroplast 20(1):11–19

    Article  Google Scholar 

  8. Clarke IC, Manley MT (2008) How do alternative bearing surfaces influence wear behavior. J Am Acad Orthop Surg 16(S1):S86–S93

    PubMed  Google Scholar 

  9. Cobb TK, Morrey BF, Ilstrup DM (1996) The elevated-rim acetabular liner in total hip arthroplasty: relationship to postoperative dislocation. J Bone Joint Surg Am 78(1):80–86

    PubMed  CAS  Google Scholar 

  10. Cobb TK, Morrey BF, Ilstrup DM (1997) Effect of the elevated-rim acetabular liner on loosening after total hip arthroplasty. J Bone Jt Surg Am 79(9):1361–1364

    CAS  Google Scholar 

  11. D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CWJ (2000) The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head–neck ratios. J Bone Jt Surg Am 82(3):315–321

    Google Scholar 

  12. Girarda J, Krantza N, Bocqueta D, Wavreillea G, Migaud H (2012) Femoral head to neck offset after hip resurfacing is critical for range of motion. Clin Biomech 27(2):165–169

    Article  Google Scholar 

  13. Gondi G, Roberson JR, Ganey TM, Shahriari A, Hutton WG (1997) Impingement after total hip arthroplasty related to prosthetic component selection and range of motion. J South Orthop Assoc 6(4):266–272

    PubMed  CAS  Google Scholar 

  14. Kessler O, Patil S, Wirth S, Mayr E, Colwell CWJ, D’Lima DD (2008) Bony impingement affects range of motion after total hip arthroplasty: a subject-specific approach. J Orthop Res 26(4):443–452

    Article  PubMed  Google Scholar 

  15. Kluess D, Martin H, Mittelmeier W, Schmitz K-P, Bader R (2007) Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement. Med Eng Phys 29:465–471

    Article  PubMed  Google Scholar 

  16. Ko BH, Yoon YS (2008) Optimal orientation of implanted components in total hip arthroplasty with polyethylene on metal articulation. Clin Biomech 23(8):996–1003

    Article  Google Scholar 

  17. Lin HC, Luo TL, Chen JH (2012) Wear analysis of chamfered elongated acetabular cup liners. Med Biol Eng Comput 50(3):253–260

    Article  PubMed  Google Scholar 

  18. Malik A, Maheshwari A, Dorr LD (2007) Impingement with total hip replacement. J Bone Joint Surg Am 89:1832–1842

    Article  PubMed  Google Scholar 

  19. Malviya A, Lingard EA, Malik A, Bowman R, Holland JP (2010) Hip flexion after Birmingham hip resurfacing role of cup anteversion, anterior femoral head-neck offset, and head-neck ratio. J Arthroplast 25(3):387–391

    Article  Google Scholar 

  20. Matsushita A, Nakashima Y, Jingushi S, Yamamoto T, Kuraoka A, Iwamoto Y (2009) Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplast 24(4):646–651

    Article  Google Scholar 

  21. Scifert CF, Brown TD, Pedersen DR, Callaghan JJ (1998) A finite element analysis of factors influencing total hip dislocation. Clin Orthop Rel Res 355:152–162

    Article  Google Scholar 

  22. Soong M, Rubash HE, Macaulay W (2004) Dislocation after total hip arthroplasty. J Am Acad Orthop Surg 12(5):314–321

    PubMed  Google Scholar 

  23. Usrey MM, Noble PC, Rudner LJ, Conditt MA, Birman MV, Santore RF, Mathis KB (2006) Does neck/liner impingement increase wear of ultrahigh-molecular-weight polyethylene liners? J Arthroplast 21(6):S65–S71

    Article  Google Scholar 

  24. Valle GDV, Ruzo PS, Li S, Pellicci P, Sculco TP, Salvati EA (2001) Dislodgment of polyethylene liners in first and second-generation Harris-Galante acetabular components. J Bone Jt Surg Am 83(4):553–559

    Google Scholar 

  25. Vendittoli PA, Ganapathi M, Nuño N, Plamondon D, Lavigne M (2007) Factors affecting hip range of motion in surface replacement arthroplasty. Clin Biomech 22(9):1004–1012

    Article  Google Scholar 

  26. Widmer KH (2003) Comment on “A mathematical formula to calculate the theoretical range of motion for total hip arthroplasty”. J Biomech 36(4):615

    Article  PubMed  Google Scholar 

  27. Williams D, Royle M, Norton M (2009) Metal-on-metal hip resurfacing: the effect of cup position and component size on range of motion to impingement. J Arthroplast 24(1):144–151

    Article  Google Scholar 

  28. Williams S, Butterfield M, Stewart T, Ingham E, Stone M, Fisher J (2003) Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation. Proc Inst Mech Eng Part H 217(2):147–153

    Article  CAS  Google Scholar 

  29. Wu JSS, Hsu SL, Chen JH (2010) Evaluating the accuracy of wear formulae for acetabular cup liners. Med Biol Eng Comput 48(2):157–165

    Article  PubMed  Google Scholar 

  30. Wu JSS, Hsu SL, Chen JH (2010) Wear patterns of, and wear volume formulae for, cylindrically elongated acetabular cup liners. Med Biol Eng Comput 48(7):691–701

    Article  PubMed  Google Scholar 

  31. Wu JSS, Hsu SL, Chen JH (2010) Wear patterns of, and wear volume formulae for, hemispherical acetabular cup liners. Wear 268:481–487

    Article  CAS  Google Scholar 

  32. Yamaguchi M, Bauer TW, Hashimoto Y (1997) Three-dimensional analysis of multiple wear vectors in retrieved acetabular cups. J Bone Jt Surg Am 79(10):1539–1544

    CAS  Google Scholar 

  33. Yoshimine F, Ginbayashi K (2002) A mathematical formula to calculate the theoretical range of motion for total hip replacement. J Biomech 35(7):989–993

    Article  PubMed  Google Scholar 

  34. Yoshimine F (2005) The influence of the oscillation angle and the neck anteversion of the prosthesis on the cup safe-zone that fulfills the criteria for range of motion in total hip replacements. The required oscillation angle for an acceptable cup safe-zone. J Biomech 38(1):125–132

    Article  PubMed  Google Scholar 

  35. Yoshimine F (2006) The safe-zones for combined cup and neck anteversions that fulfill the essential range of motion and their optimum combination in total hip replacements. J Biomech 39(7):1315–1323

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC100-2221-E-040-006-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Horng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HC., Chi, WM., Ho, YJ. et al. Effects of design parameters of total hip components on the impingement angle and determination of the preferred liner skirt shape with an adequate oscillation angle. Med Biol Eng Comput 51, 397–404 (2013). https://doi.org/10.1007/s11517-012-1008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-1008-3

Keywords

Navigation