Skip to main content

Advertisement

Log in

Measurement of bioelectric and acoustic profile of breast tissue using hybrid magnetoacoustic method for cancer detection

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper proposes a novel hybrid magnetoacoustic measurement (HMM) system aiming at breast cancer detection. HMM combines ultrasound and magnetism for the simultaneous assessment of bioelectric and acoustic profiles of breast tissue. HMM is demonstrated on breast tissue samples, which are exposed to 9.8 MHz ultrasound wave with the presence of a 0.25 Tesla static magnetic field. The interaction between the ultrasound wave and the magnetic field in the breast tissue results in Lorentz Force that produces a magnetoacoustic voltage output, proportional to breast tissue conductivity. Simultaneously, the ultrasound wave is sensed back by the ultrasound receiver for tissue acoustic evaluation. Experiments are performed on gel phantoms and real breast tissue samples harvested from laboratory mice. Ultrasound wave characterization results show that normal breast tissue experiences higher attenuation compared with cancerous tissue. The mean magnetoacoustic voltage results for normal tissue are lower than that for the cancerous tissue group. In conclusion, the combination of acoustic and bioelectric measurements is a promising approach for breast cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arendt ML, Rudnick JA, Keller PJ, Kuperwasser C (2010) Stroma in breast development and disease. Semin Cell Dev Biol 21:11–18

    Article  PubMed  CAS  Google Scholar 

  2. Association for the Advancement of Medical Instrumentation (1993) American National Standard: Safe Current Limit for Electromedical Apparatus. Arlington, Document ANSI/AAMI ES1-1993

  3. Austin VC, Blamire AM, Grieve SM, O’Neill MJ, Styles P, Matthews PM, Sibson NR (2003) Differences in the BOLD fMRI response to direct and indirect cortical stimulation in the rat. Magn Reson Med 49:838–847

    Article  PubMed  CAS  Google Scholar 

  4. Berger G, Laugier P, Thalabard JC, Perrin J (1990) Global breast attenuation: control group and benign breast diseases. Ultrason Imaging 12:47–57

    PubMed  CAS  Google Scholar 

  5. Blad B, Baldertorp B (1996) Impedance spectra of tumor tissue in comparison of normal tissue: a possible clinical application for electrical impedance tomography. Physiol Meas 17:105–115

    Article  Google Scholar 

  6. Chaudary SS, Mishra RK, Swarup A, Thomas JM (1984) Dielectric properties of normal and malignant human breast tissue at microwave and radiowave frequencies. Indian J Biochem Biophys 21:76–79

    Google Scholar 

  7. Crespi F, England T, Ratti E, Trist DG (1995) Carbon fibre micro-electrodes for concomitant in vivo electrophysiological and voltammetric measurements: no reciprocal influences. Neurosci Lett 188:33–36

    Article  PubMed  CAS  Google Scholar 

  8. Cuzick J (2003) Epidemiology of breast cancer—selected highlights. Breast 12:405–411

    Article  PubMed  Google Scholar 

  9. Edmonds PD, Mortensen CL (1991) Ultrasonic tissue characterization for breast biopsy specimen. Ultrason Imaging 13(2):162–185

    PubMed  CAS  Google Scholar 

  10. Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954–961

    PubMed  CAS  Google Scholar 

  11. Johnson SA, Abbott T, Bell R, Berggren M, Borup D, Robinson D, Wiskin J, Olsen S, Hanover B (2007) Non-invasive breast tissue characterization using ultrasound speed and attenuation -in vivo validation. Acoust Imaging 28:147–154

    Google Scholar 

  12. Johnson-Selfridge P, Selfridge RA (1985) Approximate materials properties in isotropic materials. IEEE Trans. Ultrasonic Ferroelectric Freq Control SU-32, p 381

  13. Jossinet J (1996) Variability of impedivity in normal and pathological breast tissue. Med Biol Eng Comput 34:346–350

    Article  PubMed  CAS  Google Scholar 

  14. Jossinet J, Lobel A, Michoudet C, Schmitt M (1985) Quantitative technique for bio-electrical spectroscopy. J Biomed Eng 7:289–294

    Article  PubMed  CAS  Google Scholar 

  15. Kelley JF, McGough RJ (2009) Fractal ladder models and power law wave equation. J Acoust Soc Am 126(4):2072–2081

    Article  Google Scholar 

  16. Landini L, Sarnelli S (1986) Evaluation of the attenuation coefficient in normal and pathological breast tissue. Med Biol Eng Compu 24:243–247

    Article  CAS  Google Scholar 

  17. Li X, Xu Y, He B (2006) A phantom study of magnetoacoustic tomography with magnetic induction (MAT-MI) for imaging electrical impedance of biological tissue. J Appl Phys 99(6):066112

    Article  PubMed  Google Scholar 

  18. Lim CT, Zhou EH, Quek ST (2000) Mechanical model for living cell: a review. J Biomech 39:195–216

    Article  Google Scholar 

  19. Lin J, Sun S, Chen C, Chang W, Hou B, Shyu BC (2004) A fMRI study of the anterior cingulate cortex activations during direct electrical stimulation of the medial thalamus in rats. J Neurosci Method 137:123–131

    Article  Google Scholar 

  20. Locasale JW, Cantley LC (2010) Altered metabolism in cancer. BMC Biol 88:88

    Article  Google Scholar 

  21. Miller PR, Gittard SD, Edward TL, Lopez DM, Xiao X (2011) Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5-013415:1–14

    Google Scholar 

  22. Mohamad Salim MI, Ahmmad SNZ, Rosidi B, Ariffin I, Ahmad AH, Supriyanto E (2010) Measurements of ultrasound attenuation for normal and pathological mice breast tissue using 10 MHz ultrasound wave. In: Proceeding of the 3rd WSEAS international conference on visualization, imaging and simulation (VIS’10), November 3–5, 2010. WSEAS; Faro, Portugal, pp 118–122

  23. Norton SJ (2003) Can ultrasound be used to stimulate nerve tissue? Biomed Eng Online 2:1–9

    Article  Google Scholar 

  24. Norton M, Karczub D (2003) Fundamentals of noise and vibration analysis for engineer, 2nd edn. Cambridge Press, Cambridge

    Book  Google Scholar 

  25. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6(11):1–15

    Google Scholar 

  26. Roth BJ, Basser PJ, Wiksowo JP (1994) A theoretical model for magneto-acoustic imaging of bioelectric currents. IEEE Trans Biomed Eng 41(8):723–728

    Article  PubMed  CAS  Google Scholar 

  27. Sha L, Ward ER, Story B (2002) A review of dielectric properties of normal and malignant breast tissue. In: Proceeding of IEEE SoutheastCon 2002, IEEE, pp 457–462

  28. Shinoji M, Hancock WW, Abe K, Micko C, Casper KA, Baine RM (1998) Activation of coagulation and angiogenesis in cancer: immunohistochemical localization in situ of clotting proteins and vascular endothelial growth factor in human cancer. Am J Pathol 152(2):399–411

    Google Scholar 

  29. Su Y, Haider S, Hrbek A (2007) Magnetoacousto electrical tomography, a new imaging modality for electrical impedance. In: 13th international conference on electrical bioimpedance and the 8th conference on electrical impedance tomography IFMBE proceeding, August 29-Sept, 2007. Springer, Graz, pp 292–295

  30. Surowiec AJ, Stuchly SS, Barr JB, Swarup A (1988) Dielectric properties of breast carcinoma and the surrounding tissue. IEEE Trans Biomed Eng 35:257–263

    Article  PubMed  CAS  Google Scholar 

  31. Towe BC, Islam MR (1988) A magneto acoustic method for the noninvasive measurement of bioelectric current. IEEE Trans Biomed Eng 35(10):892–894

    Article  PubMed  CAS  Google Scholar 

  32. The Jackson Laboratory (2010) JAX Mice Database: MMTV-PyVT strain, USA

  33. Wen H, Bennet E (2000) The feasibility of Hall effect imaging in humans. 2000 IEEE Ultrasonic Symposium, October 22–25, IEEE; San Juan, Puerto Rico, pp 1619–1622

  34. Wen H, Bennett E, Shah J, Balaban RS (1997) An imaging method using ultrasound and Magnetic Field. In: Proceeding of the 1997 IEEE ultrasonic symposium. October 5–8, 1997. IEEE; Toronto, Ontario, pp 1407–1410

  35. Wen H, Shah J, Balaban RS (1998) Hall effect imaging. IEEE Trans Biomed Eng 45:119–124

    Article  PubMed  CAS  Google Scholar 

  36. Ye SG, Harasiewicz KA, Pavlin CJ, Foster FS (1995) Ultrasound characterization of normal ocular tissue in the frequency range from 50 MHz to 100 MHz. IEEE Trans Ultrason Ferroelectr Freq Control 42(1):8–14

    Article  Google Scholar 

  37. Zeng X, Liu G, Xia H, Xu X (2010) An acoustic characteristics study of magneto-acousto-electrical tomography: a new method to reconstruct current density distribution at every point of a sample. 2010 3rd International Conference on Biomedical Engineering and Informatics. 16–18 Oct 2010. IEEE; Yantai, pp 95–98

Download references

Acknowledgments

The authors would like to acknowledge Ministry of Higher Education of Malaysia for the award of Fundamental Research Grant Scheme Vote 78371 entitled “A Novel Tissue Imaging Method using short pulse magnetoacoustic wave” and Universiti Teknologi Malaysia for the Institutional Research Grants Vote 77535 and 77202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Mohamad Salim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salim, M.I.M., Supriyanto, E., Haueisen, J. et al. Measurement of bioelectric and acoustic profile of breast tissue using hybrid magnetoacoustic method for cancer detection. Med Biol Eng Comput 51, 459–466 (2013). https://doi.org/10.1007/s11517-012-1014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-1014-5

Keywords

Navigation