Skip to main content
Log in

Characterization of skin dermis microcirculation in flow-mediated dilation using optical sensor with pressurization mechanism

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Blood flows out of microvessels in the dermis when pressure higher than arterial blood pressure is applied to the fingertip, and subsequently re-flows into the microcirculation when pressure is released. Both the blood outflow and the reflow characteristics of microcirculation under pressurization are associated with microvasculature, blood and blood pressure. This study describes a novel method of measuring blood inflow and outflow characteristics of dermis microcirculation. An optical sensor, which is furnished with a 571 nm wavelength light source and a photodetector, is pressed to the skin surface using a pressure higher than the human subject’s systolic arterial pressure. Hemoglobin concentration by change of the blood flow amount is estimated by the Beer–Lambert law. This method is applied to the measurement of blood inflow and outflow characteristics of microcirculation caused by reactive hyperemia after ischemia with duration of 5 min. Among three parameters evaluated, the one relating to the amplitude of pulsation shows a close correlation with conventional plethysmography, while the other two show varying time responses. Our method provides a new and useful insight into pathophysiology in health and disease conditions and may help researchers better understand the underlying mechanisms of numerous microcirculation-influenced diseases and medical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aizu Y, Asakura T (1991) Bio-speckle phenomena and their application to the evaluation of blood flow. Opt Laser Technol 23:205–219

    Article  Google Scholar 

  2. Antonios F, Kaski J, Hasan K, Brown S, Singer D (2001) Rarefaction of skin capillaries in patients with anginal chest pain and normal coronary arteriograms. Eur Heart J 22:1144–1148

    Article  PubMed  CAS  Google Scholar 

  3. Briers D (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas 22:R35–R66

    Article  PubMed  CAS  Google Scholar 

  4. Briers D, Richards D, He X (1999) Capillary blood flow monitoring using laser speckle contrast analysis (LASCA). J Biomed Opt 4:164–175

    Article  PubMed  CAS  Google Scholar 

  5. Celermajer S, Sorensen E, Gooch M, Spiegelhalter J, Miller I, Sullivan D, Lloyd K, Deanfield E (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111–1115

    Article  PubMed  CAS  Google Scholar 

  6. Czernichow S, Greenfield J, Galan P, Bastard J, Charnaux N, Samaras K, Safar M, Blacher J, Hercberg S, Levy B (2010) Microvascular dysfunction in healthy insulin-sensitive overweight individuals. J Hypertens 28:325–332

    Article  PubMed  CAS  Google Scholar 

  7. Duncan D, Kirkpatrick S (2008) Can laser speckle flowmetry be made a quantitative tool? J Opt Soc Am A25:2088–2094

    Article  Google Scholar 

  8. Essex H, Byrno P (1991) A laser Doppler scanner for imaging blood flow in skin. J Biomed Eng 13:189–194

    Article  PubMed  CAS  Google Scholar 

  9. Hahn M, Heubach T, Steins A, Jünger M (1998) Hemodynamics in nailfold capillaries of patients with systemic scleroderma: synchronous measurements of capillary blood pressure and red blood cell velocity. J Invest Dermatol 110:982–985

    Article  PubMed  CAS  Google Scholar 

  10. Irving J, Walker B, Noon J, Watt G, Webb D, Shore A (2002) Microvascular correlates of blood pressure, plasma glucose, and insulin resistance in health. Cardiovasc Res 53:271–276

    Article  PubMed  CAS  Google Scholar 

  11. Jörneskog G, Fagrell B (1996) Discrepancy in skin capillary circulation between fingers and toes in patients with type 1 diabetes. Int J Microcirc Clin Exp 16:313–319

    Article  PubMed  Google Scholar 

  12. Keulen T, Schaper N, Houben A, van Lin A, Lutgens I, Rijkers K, Dallinga-Thie G, de Bruin T (2002) Reduced structural and functional skin capillaries in familial combined hyperlipidemia affected men, associated with increased remnant-like lipoprotein cholesterol levels. Atherosclerosis 163:355–362

    Article  PubMed  CAS  Google Scholar 

  13. Khodabandehlou T, Zhao H, Vimeux M, Le Dévéhat C (1997) The autoregulation of the skin microcirculation in healthy subjects and diabetic patients with and without vascular complications. Clin Hemorheol Microcirc 17:357–362

    PubMed  CAS  Google Scholar 

  14. Krentz J, Clough G, Byrne C (2009) Vascular disease in the metabolic syndrome: do we need to target the microcirculation to treat large vessel disease? J Vasc Res 46:515–526

    Article  PubMed  CAS  Google Scholar 

  15. Kuvin T, Patel P, Sliney A, Pandian G, Sheffy J, Schnall P, Karas H, Udelson E (2003) Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J 146(1):168–174

    Article  PubMed  Google Scholar 

  16. Lambova N, Müller-Ladner U (2009) The specificity of capillaroscopic pattern in connective autoimmune diseases. A comparison with microvascular changes in diseases of social importance: arterial hypertension and diabetes mellitus. Mod Rheumatol 19:600–605

    Article  PubMed  Google Scholar 

  17. Levesque J, Lamarche B (2008) The metabolic syndrome: definitions, prevalence and management. J Nutrigenet Nutrigenomics 1:100–108

    Article  PubMed  Google Scholar 

  18. Midttun M, Sejrsen P, Paaske W (2006) Smokers have severely disturbed peripheral micro-circulation. Int Angiol 25:293–296

    PubMed  CAS  Google Scholar 

  19. Millikan A (1942) The oximeter: an instrument for measuring continuously oxygen-saturation of arterial blood in man. Rev Sci Instrum 13:434–444

    Article  CAS  Google Scholar 

  20. Noon P, Walker B, Webb D, Shore A, Holton D, Edwards H, Watt G (1997) Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest 99:1873–1879

    Article  PubMed  CAS  Google Scholar 

  21. Obeid N, Barnett N, Dougherty G, Ward G (1990) A critical review of laser Doppler flowmetry. J Med Eng Tech 14:178–181

    Article  CAS  Google Scholar 

  22. Olufsen S (2004) On deriving lumped models for blood flow and pressure in the systemic arteries. Math Biosci Eng 1:61–80

    Article  PubMed  Google Scholar 

  23. Pasqui L, Puccetti L, Di Renzo M, Bruni F, Camarri A, Palazzuoli A, Biagi F, Servi M, Bischeri D, Auteri A, Pastorelli M (2005) Structural and functional abnormality of systemic microvessels in cardiac syndrome X. Nutr Metab Cardiovasc Dis 15:56–64

    Article  PubMed  CAS  Google Scholar 

  24. Quarteroni A (2000) Modeling the cardiovascular system: a mathematical challenge. In: Engquist B, Schmid W (eds) Mathematics unlimited—2001 and beyond. Springer, Berlin, pp 961–970

    Google Scholar 

  25. Serné H, Gans R, ter Maaten J, Tangelder G, Donker A, Stehouwer C (2001) Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension 38:238–242

    Article  PubMed  Google Scholar 

  26. Shibata Y, Kashiwagi B, Ono Y, Fukabori Y, Suzuki K, Honma S, Yamanaka H (2004) The evaluation of rat prostate blood flow using a laser speckle flowmetry: a comparative study using the microsphere method in castrated and androgen-replenished rats. Urol Res 32:44–48

    Article  PubMed  CAS  Google Scholar 

  27. Stansberry B, Peppard H, Babyak L, Popp G, McNitt P, Vinik A (1999) Primary nociceptive afferents mediate the blood flow dysfunction in non-glabrous (hairy) skin of type 2 diabetes: a new model for the pathogenesis of microvascular dysfunction. Diabetes Care 22:1549–1554

    Article  PubMed  CAS  Google Scholar 

  28. Tucker T, Pearson R, Cooke E, Benjamin N (1999) Effect of nitric-oxide- generating system on microcirculatory blood flow in skin of patients with severe Raynaud’s syndrome: a randomised trial. Lancet 354:1670–1675

    Article  PubMed  CAS  Google Scholar 

  29. Yamakoshi Y, Yamanaka Y (2007) Blood outflow from capillary under forced pressure: comparison between electric circuit analog and optical measurement. Jpn J Appl Phys 46:7970–7976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Yamakoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamakoshi, Y., Kotani, K., Taniguchi, N. et al. Characterization of skin dermis microcirculation in flow-mediated dilation using optical sensor with pressurization mechanism. Med Biol Eng Comput 51, 497–505 (2013). https://doi.org/10.1007/s11517-012-1017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-1017-2

Keywords

Navigation