Skip to main content
Log in

An adaptive Tikhonov regularization method for fluorescence molecular tomography

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The high degree of absorption and scattering of photons propagating through biological tissues makes fluorescence molecular tomography (FMT) reconstruction a severe ill-posed problem and the reconstructed result is susceptible to noise in the measurements. To obtain a reasonable solution, Tikhonov regularization (TR) is generally employed to solve the inverse problem of FMT. However, with a fixed regularization parameter, the Tikhonov solutions suffer from low resolution. In this work, an adaptive Tikhonov regularization (ATR) method is presented. Considering that large regularization parameters can smoothen the solution with low spatial resolution, while small regularization parameters can sharpen the solution with high level of noise, the ATR method adaptively updates the spatially varying regularization parameters during the iteration process and uses them to penalize the solutions. The ATR method can adequately sharpen the feasible region with fluorescent probes and smoothen the region without fluorescent probes resorting to no complementary priori information. Phantom experiments are performed to verify the feasibility of the proposed method. The results demonstrate that the proposed method can improve the spatial resolution and reduce the noise of FMT reconstruction at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Axelsson J, Svensson S (2007) Spatially varying regularization based on spectrally resolved fluorescence emission in fluorescence molecular tomography. Opt Express 15(21):13574–13584

    Article  PubMed  Google Scholar 

  2. Baritaux JC, Hassler, Bucher KM, Sanyal S, Unser M (2011) Sparsity-driven reconstruction for FDOT with anatomical priors. IEEE Trans Med Imaging 30(5):1143–1153

  3. Ducros N, D’andrea C, Valentini G, Rudge T, Arridge S (2010) Bassi A Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination. Opt Lett 35(21):3676–3678

    Article  PubMed  Google Scholar 

  4. Ducros N, Bassi A, Valentini G, Schweiger M, Arridge S, D’Andrea C (2011) Multiple-view fluorescence optical tomography reconstruction using compression of experimental data. Opt Lett 36(8):1377–1379

    Article  PubMed  Google Scholar 

  5. Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223

    Article  Google Scholar 

  6. Graves EE, Weissleder R, Ntziachristos V (2004) Fluorescence molecular imaging of small animal tumor models. Curr Mol Med 4(4): 419–430

    Google Scholar 

  7. Hansen PC, O’Leary DP (1993) The use of the l-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14(6):1487–1503

    Article  Google Scholar 

  8. Hansen PC (1992) Analysis of discrete ill-posed problems by means of the l-curve. SIAM Rev 34(4):561–580

    Google Scholar 

  9. Hiltunen P, Calvetti D, Somersalo E (2008) An adaptive smoothness regularization algorithm for optical tomography. Opt Express 16(24):19957–19977

    Article  PubMed  CAS  Google Scholar 

  10. Hyde D, Miller E, Brooks D, Ntziachristos V (2010) Data specific spatially varying regularization for multimodal fluorescence molecular tomography. IEEE Trans Med Imaging 29(2):365–374

    Article  PubMed  Google Scholar 

  11. Katamreddy SH, Yalavarthy PK (2012) Model-resolution based regularization improves near infrared diffuse optical tomography. J Opt Soc Am A 29(5):649–656

    Article  Google Scholar 

  12. Liu F, Liu X, Wang DF, Zhang B, Bai J (2010) A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals. Ann Biomed Eng 38(11):3440–3448

    Article  PubMed  Google Scholar 

  13. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Gene Dev 17(5):545–580

    Article  PubMed  CAS  Google Scholar 

  14. Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65(14):6330–6336

    Article  PubMed  CAS  Google Scholar 

  15. Niu H, Guo P, Ji L, Zhao Q, Jiang T (2008) Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method. Opt Express 16(17):12423–12434

    Article  PubMed  Google Scholar 

  16. Ntziachristos V, Bremer C, Graves EE, Ripoll J, Weissleder R (2002) In vivo tomographic imaging of near-infrared fluorescent probes. Mol imaging 1(2):82–88

    Article  PubMed  Google Scholar 

  17. Pogue BW, McBride TO, Prewitt J, O’sterberg UL, Paulsen KD (1999) Spatially variant regularization improves diffuse optical tomography. Appl Opt 38(13):2950–2961

    Article  PubMed  CAS  Google Scholar 

  18. Ripoll J, Ntziachristos V, Carminati R, Nieto-Vesperinas M (2001) Kirchhoff approximation for diffusive waves. Phys Rev E 64:051917

    Article  CAS  Google Scholar 

  19. Ripoll J, Nieto-Vesperinas M, Weissleder R, Ntziachristos V (2002) Fast analytical approximation for arbitrary geometries in diffuse optical tomography. Opt Lett 27(7):527–529

    Article  PubMed  Google Scholar 

  20. Rudge TJ, Soloviev VY, Arridge SR (2010) Fast image reconstruction in fluoresence optical tomography using data compression. Opt Lett 35(5):763–765

    Article  PubMed  Google Scholar 

  21. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2(2):123–131

    Article  PubMed  CAS  Google Scholar 

  22. Scherzer O (1993) The use of morozov’s discrepancy principle for tikhonov regularization for solving nonlinear ill-posed problems. Comput Lett 51:45–60

    Article  Google Scholar 

  23. Schulz RB, Ripoll J, Ntziachristos V (2004) Experimental fluorescence tomography of tissues with noncontact measurements. IEEE Trans Med Imaging 23(4):492–500

    Article  PubMed  Google Scholar 

  24. Schweiger M, Arridge SR, Hiraoka M, Delpy DT (1995) The finite-element method for the propagation of light in scattering media—boundary and source conditions. Med Phys 22(11):1779–1792

    Article  PubMed  CAS  Google Scholar 

  25. Srinivasan S, Pogue B, Dehghani H, Jiang S, Song X, Paulsen K (2004) Improved quantification of small objects in near-infrared diffuse optical tomography. J Biomed Opt 9(6):1161–1171

    Article  PubMed  Google Scholar 

  26. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Wiley, Washington, DC

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (973) under Grant No. 2011CB707701; the National Natural Science Foundation of China under Grant No. 81071191, 81271617; the National Major Scientific Instrument and Equipment Development Project under Grant No. 2011YQ030114; National Science and technology support program under Grant No. 2012BAI23B00 and 2011BAI02B03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Zhang, B., Wang, X. et al. An adaptive Tikhonov regularization method for fluorescence molecular tomography. Med Biol Eng Comput 51, 849–858 (2013). https://doi.org/10.1007/s11517-013-1054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1054-5

Keywords

Navigation