Skip to main content
Log in

The role of hand motion connectivity in the performance of laparoscopic procedures on a virtual reality simulator

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Assessment of surgical skills based on virtual reality (VR) technology has received major attention in recent years, with special focus placed on experience discrimination via hand motion analysis. Although successful, this approach is restricted from extracting additional important information about the trainee’s hand kinematics. In this study, we investigate the role of hand motion connectivity in the performance of a laparoscopic cholecystectomy on a VR simulator. Two groups were considered: experienced residents and beginners. The connectivity pattern of each subject was evaluated by analyzing their hand motion signals with multivariate autoregressive (MAR) models. Our analysis included the entire as well as key phases of the operation. The results revealed that experienced residents outperformed beginners in terms of the number, magnitude and covariation of the MAR weights. The magnitude of the coherence spectra between different combinations of hand signals was in favor of the experienced group. Yet, the more challenging (in terms of hand movement activity) an operational phase was, the more connections were generated, with experienced subjects performing more coordinated gestures per phase. The proposed approach provides a suitable basis for hand motion analysis of surgical trainees and could be utilized in future VR simulators for skill assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggarwal R, Dosis A, Bello F, Darzi A (2007) Motion tracking systems for assessment of surgical skill. Surg Endosc 21:339

    Article  PubMed  CAS  Google Scholar 

  2. Darzi A, Smith S, Taffinder N (1999) Assessing operative skill. Needs to become more objective. BMJ 318:887–888

    Article  PubMed  CAS  Google Scholar 

  3. Dosis A, Aggarwal R, Bello F, Moorthy K, Munz Y, Gillies D, Darzi A (2005) Synchronized video and motion analysis for the assessment of procedures in the operating theater. Arch Surg 140:293–299

    Article  PubMed  Google Scholar 

  4. Gallagher AG, Richie K, McClure N, McGuigan J (2001) Objective psychomotor skills assessment of experienced, junior, and novice laparoscopists with virtual reality. World J Surg 25:1478–1483

    Article  PubMed  CAS  Google Scholar 

  5. Gallagher AG, Ritter EM, Lederman AB, McClusky DA 3rd, Smith CD (2005) Video-assisted surgery represents more than a loss of three-dimensional vision. Am J Surg 189:76–80

    Article  PubMed  Google Scholar 

  6. Harrison L, Penny WD, Friston K (2003) Multivariate autoregressive modeling of fMRI time series. Neuroimage 19:1477–1491

    Article  PubMed  CAS  Google Scholar 

  7. Kahol K, Krishnan NC, Balasubramanian VN, Panchanathan S, Smith M, Ferrara J (2006) Measuring movement expertise in surgical tasks. In: Nahrstedt K, Matthew T, Yong R, Wolfgang K, Ketan M-P (eds) Proceedings of the 14th annual ACM international conference on multimedia, Santa Barbara, CA, USA, Association for Computing Machinery (ACM) Press, 2006, New York, pp 719–722

  8. Leong JJ, Nicolaou M, Atallah L, Mylonas GP, Darzi AW, Yang GZ (2007) HMM assessment of quality of movement trajectory in laparoscopic surgery. Comput Aided Surg 12:335–346

    PubMed  Google Scholar 

  9. Litynski GS (1999) Profiles in laparoscopy: Mouret, Dubois, and Perissat: the laparoscopic breakthrough in Europe (1987–1988). JSLS 3:163–167

    PubMed  CAS  Google Scholar 

  10. Loukas C, Georgiou E (2011) Multivariate autoregressive modeling of hand kinematics for laparoscopic skills assessment of surgical trainees. IEEE Trans Biomed Eng 58:3289–3297

    Article  PubMed  Google Scholar 

  11. Loukas C, Georgiou E ((in press)) Surgical workflow analysis with Gaussian mixture multivariate autoregressive (GMMAR) models: a simulation study. Computer Aided Surgery

  12. Loukas C, Nikiteas N, Kanakis M, Georgiou E (2011) Deconstructing laparoscopic competence in a virtual reality simulation environment. Surgery 149:750–760

    Article  PubMed  Google Scholar 

  13. MacFadyen BV, Arregui ME, Olsen DO, Soper NJ, Wexner SD, Eubanks S, Peters JH, Swanstrom LL (2004) Laparoscopic surgery of the abdomen. Springer, New York

    Book  Google Scholar 

  14. McBeth PB, Hodgson AJ, Nagy AG, Qayumi K (2002) Quantitative methodology of evaluating surgeon performance in laparoscopic surgery. Stud Health Technol Inform 85:280–286

    PubMed  Google Scholar 

  15. Megali G, Sinigaglia S, Tonet O, Dario P (2006) Modelling and evaluation of surgical performance using hidden Markov models. IEEE Trans Biomed Eng 53:1911–1919

    Article  PubMed  Google Scholar 

  16. Noar MD (1991) Endoscopy simulation: a brave new world? Endoscopy 23:147–149

    Article  PubMed  CAS  Google Scholar 

  17. Padoy N, Blum T, Feussner H, Berger M-O, Navab N (2008) On-line recognition of surgical activity for monitoring in the operating room. In: Goker MH (ed) Proceedings of the 20th Conference on Innovative Applications of Artificial Intelligence, Palo Alto, CA, USA, Association for the Advancement of Artificial Intelligence (AAAI) 2008 Press, Chicago, pp 1718–1724

  18. Penny WD, Roberts SJ (2002) Bayesian multivariate autoregressive models with structured priors. IEE Proc Vision Image Signal Process 149:33–41

    Article  Google Scholar 

  19. Priestley MB (1981) Spectral analysis and time series. Academic Press, London

    Google Scholar 

  20. Rabiner LR (1989) A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  21. Reiley CE, Lin HC, Varadarajan B, Vagvolgyi B, Khudanpur S, Yuh DD, Hager GD (2008) Automatic recognition of surgical motions using statistical modeling for capturing variability. Stud Health Technol Inform 132:396–401

    PubMed  Google Scholar 

  22. Rosen J, Solazzo M, Hannaford B, Sinanan M (2001) Objective laparoscopic skills assessments of surgical residents using Hidden Markov Models based on haptic information and tool/tissue interactions. Stud Health Technol Inform 81:417–423

    PubMed  CAS  Google Scholar 

  23. Rosen J, Brown JD, Chang L, Sinanan MN, Hannaford B (2006) Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Trans Biomed Eng 53:399–413

    Article  PubMed  Google Scholar 

  24. Sutton C, McCloy R, Middlebrook A, Chater P, Wilson M, Stone R (1997) MIST VR. A laparoscopic surgery procedures trainer and evaluator. Stud Health Technol Inform 39:598–607

    PubMed  CAS  Google Scholar 

  25. Tang B, Hanna GB, Joice P, Cuschieri A (2004) Identification and categorization of technical errors by observational clinical human reliability assessment (OCHRA) during laparoscopic cholecystectomy. Arch Surg 139:1215–1220

    Article  PubMed  CAS  Google Scholar 

  26. Weisberg (2005) Applied linear regression. Wiley, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Loukas.

Appendix

Appendix

The posterior distribution for the MAR coefficients structured in a vectorized form is \(p({\mathbf{w}}/{\mathbf{O}}) = N({\mathbf{w}}/\overline{\mathbf{w}} ,\overline{\varvec{\Upsigma}})\) with

$$\overline{{\varvec{\Upsigma}}} = \left( {\overline{{\varvec{\Uplambda}}} \otimes {\mathbf{X}}^{\text{T}} {\mathbf{X}} + \overline{\lambda } {\mathbf{I}}_{{n}} } \right)^{ - 1} $$
(18)
$$\overline{{\mathbf{w}}} = \overline{{\varvec{\Upsigma}}} \left( {\overline{\Uplambda } \otimes {\mathbf{X}}^{\text{T}} {\mathbf{X}}} \right){\mathbf{w}}_{\text{ML}} $$
(19)

Where ⊗ is the Kronecker product and w ML is the vec() form of the ML solution for the weights given by Eq. (6).

The distribution for the precision on the MAR coefficients is \(p({\lambda \mathord{\left/ {\vphantom {\lambda \varvec{O}}} \right. \kern-0pt} \varvec{O}}) = {\text{Gam}}\left( {{\lambda \mathord{\left/ {\vphantom {\lambda {b\prime ,}}} \right. \kern-0pt} {b^{\prime} ,}}c^{\prime} } \right)\) with

$$\frac{1}{b^{\prime} } = 0.5(\overline{{\mathbf{w}}} )^{\rm T} \overline{{\mathbf{w}}} + 0.5{\text{tr}}(\overline{{\varvec{\Upsigma}}} ) + b^{ - 1} $$
(20)
$$c^{\prime} = 0.5n + c $$
(21)
$$\overline{\lambda } = b^{\prime} c^{\prime} $$
(22)

The parameters of Gam are selected so that it is sufficiently uninformative (b = 1,000 and c = 0.001).

The noise precision posterior is a Wishart distribution p(Λ|O) = W d(Λ |s, S) where

$${\mathbf{S}} = ({\mathbf{Y}} - {\mathbf{X}}\overline{{\mathbf{A}}} )^{\rm T} ({\mathbf{Y}} - {\mathbf{X}}\overline{{\mathbf{A}}} ) + {\varvec{\Upomega}} $$
(23)
$$s = N $$
(24)
$$\overline{{\varvec{\Uplambda}}} = s{\mathbf{S}}^{ - 1} $$
(25)
$${\varvec{\Upomega}} = \Upsigma_{t} \left( {{\mathbf{I}}_{\text {d}} \otimes {\mathbf{x}}_{t} } \right)\overline{{\varvec{\Upsigma}}} \left( {{\mathbf{I}}_{\text {d}} \otimes {\mathbf{x}}_{t} } \right)^{\rm T} $$
(26)

The Gamma and Wishart distributions are given in the Appendix of [18].

The updates are initialized using the maximum likelihood estimates [see Eqs. (6)–(8)]. The Bayesian evidence is computed as:

$$E(r) = - \frac{N}{2}{\text{ln}}|{\mathbf{S}}| - {\text{KL}}\left( {q({{\mathbf{w}} \mathord{\left/ {\vphantom {\varvec{w}}{\mathbf{O}}} \right. \kern-0pt}}),p({{\mathbf{w}} \mathord{\left/ {\vphantom {{\mathbf{w}} \lambda }} \right. \kern-0pt} \lambda })} \right) - {\text{KL}}\left( {q(\lambda ,{\mathbf{O}})} \right) + {\text{const}} $$
(27)

where KL(p, q) denotes the Kullback-Liebler (KL) divergence between the distributions p and q. Iteration terminates when the Bayesian evidence increases by less than a predetermined threshold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loukas, C., Rouseas, C. & Georgiou, E. The role of hand motion connectivity in the performance of laparoscopic procedures on a virtual reality simulator. Med Biol Eng Comput 51, 911–922 (2013). https://doi.org/10.1007/s11517-013-1063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1063-4

Keywords

Navigation