Skip to main content
Log in

Effects of framing coil shape, orientation, and thickness on intra-aneurysmal flow

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

To study the effects of the geometrical characteristics of a framing coil on aneurysm thromboembolization efficacy, the hemodynamics in lateral aneurysms filled with coils having a different shape, orientation, and thickness were analyzed using computational fluid dynamics. The aneurysms packed with vortex and cage-shaped coils were modeled using three different coil orientations: transverse, parallel, and orthogonal. The orthogonal orientation of a vortex coil and parallel orientation of a cage-shaped coil showed higher inflow, vorticity, and wall shear stress in the dome region, which provide an unfavorable hemodynamic environment for thromboembolization. Thicker coils also produced unfavorable hemodynamic conditions compared to normal coils having the same shape, orientation, and total coil volume. Though the effects of coil shape and orientation on the hemodynamic parameters of interest were not consistent, the open area at the distal half of the mid-transverse plane of an aneurysm showed significant positive correlation with flow into the dome region and mean vorticity in the dome region. Therefore, blocking the distal mid-transverse plane of an aneurysm using coils would effectively reduce the intra-aneurysmal flow activity and provide a more efficient hemodynamic environment for thromboembolization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed S, Šutalo ID, Kavnoudias H (2011) Numerical investigation of hemodynamics of lateral cerebral aneurysm following coil embolization. Eng Appl Comp Fluid 5:329–340

    Google Scholar 

  2. Appanaboyina S, Mut F, Löhner R, Putman C, Cebral J (2009) Simulation of intracranial aneurysm stenting: techniques and challenges. Comput Methods Appl Mech Eng 198:3567–3582

    Article  Google Scholar 

  3. Augsburger L, Reymond P, Ouared R, Brina O, Rufenacht DA, Pereira VM, Stergiopulos N (2013) Influence of segmentation on morphological parameters and computed hemodynamics in cerebral aneurysms. J Biorheol 26:44–57

    Google Scholar 

  4. Babiker MH, Gonzalez LF, Albuquerque F, Collins D, Elvikis A, Frakes DH (2010) Quantitative effects of coil packing density on cerebral aneurysm fluid dynamics: an in vitro steady flow study. Ann Biomed Eng 38:2293–2301

    Article  PubMed  Google Scholar 

  5. Baharoglu MI, Schirmer CM, Hoit DA, Gao B-L, Malek AM (2010) Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms morphometric and computational fluid dynamic analysis. Stroke 41:1423–1430

    Article  PubMed  Google Scholar 

  6. Byun HS, Rhee K (2004) CFD modeling of blood flow following coil embolization of aneurysms. Med Eng Phys 26:755–761

    Article  PubMed  Google Scholar 

  7. Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE T Med Imaging 24:457–467

    Article  Google Scholar 

  8. Cho Y, Kensey K (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28:241–262

    PubMed  CAS  Google Scholar 

  9. Crobeddu E, Lanzino G, Kallmes DF, Cloft HJ (2013) Marked decrease in coil and stent utilization following introduction of flow diversion technology. J NeuroInterv Surg (in press)

  10. Ernemann UU, Grönewäller E, Duffner FB, Guervit O, Claassen J, Skalej MD (2003) Influence of geometric and hemodynamic parameters on aneurysm visualization during three-dimensional rotational angiography: an in vitro study. Am J Neuroradiol 24:597–603

    PubMed  Google Scholar 

  11. Goddard JK, Moran CJ, Cross DWT, Derdeyn CP (2005) Absent relationship between the coil-embolization ratio in small aneurysms treated with a single detachable coil and outcomes. Am J Neuroradiol 26:1916–1920

    PubMed  Google Scholar 

  12. Goubergrits L, Thamsen B, Berthe A, Poethke J, Kertzscher U, Affeld K, Petz C, Hege HC, Hoch H, Spuler A (2010) In vitro study of near-wall flow in a cerebral aneurysm model with and without coils. Am J Neuroradiol 31:1521–1528

    Article  PubMed  CAS  Google Scholar 

  13. Groden C, Laudan J, Gatchell S, Zeumer H (2001) Three-dimensional pulsatile flow simulation before and after endovascular coil embolization of a terminal cerebral aneurysm. J Cerebr Blood F Met 21:1464–1471

    Article  CAS  Google Scholar 

  14. Hardman D, Semple SI, Richards JMJ, Hoskins PR (2013) Comparison of patient-specific inlet boundary conditions in the numerical modelling of blood flow in abdominal aortic aneurysm disease. Int J Numer Methods Biomed Eng 29:165–178

    Article  Google Scholar 

  15. Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K (1980) Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech 13:175–184

    Article  PubMed  CAS  Google Scholar 

  16. Horowitz M, Purdy P, Burns D, Bellotto D (1997) Scanning electron microscopic findings in a basilar tip aneurysm embolized with Guglielmi detachable coils. Am J Neuroradiol 18:688–690

    PubMed  CAS  Google Scholar 

  17. Imbesi SG, Kerber CW (2001) Analysis of slipstream flow in a wide-necked basilar artery aneurysm: evaluation of potential treatment regimens. Am J Neuroradiol 22:721–724

    PubMed  CAS  Google Scholar 

  18. Kakalis NMP, Mitsos AP, Byrne JV, Ventikos Y (2008) The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE T Med Imaging 27:814–824

    Article  Google Scholar 

  19. Kakalis NMP, Mitsos AP, Byrne JV, Ventikos Y (2008) The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. Med Imaging IEEE Transact 27:814–824

    Article  Google Scholar 

  20. Kaminogo M, Yonekura M, Shibata S (2003) Incidence and outcome of multiple intracranial aneurysms in a defined population. Stroke 34:16–21

    Article  PubMed  Google Scholar 

  21. Kawanabe Y, Sadato A, Taki W, Hashimoto N (2001) Endovascular occlusion of intracranial aneurysms with Guglielmi detachable coils: correlation between coil packing density and coil compaction. Acta Neurochir 143:451–455

    Article  PubMed  CAS  Google Scholar 

  22. Kulcsár Z, Augsburger L, Reymond P, Pereira VM, Hirsch S, Mallik AS, Millar J, Wetzel SG, Wanke I, Rüfenacht DA (2012) Flow diversion treatment: intra-aneurismal blood flow velocity and WSS reduction are parameters to predict aneurysm thrombosis. Acta neurochirurgica 154:1827–1834

    Google Scholar 

  23. Kulcsar Z, Ugron A, Marosfői M, Berentei Z, Paal G, Szikora I (2011) Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. Am J Neuroradiol 32:587–594

    Article  PubMed  CAS  Google Scholar 

  24. Linn F, Rinkel G, Algra A, Van Gijn J (1996) Incidence of subarachnoid hemorrhage role of region, year, and rate of computed tomography: a meta-analysis. Stroke 27:625–629

    Article  PubMed  CAS  Google Scholar 

  25. Marzo A, Singh P, Reymond P, Stergiopulos N, Patel U, Hose R (2009) Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms. Comput Methods Biomech Biomed Eng 12:431–444

    Article  Google Scholar 

  26. Mitsos AP, Kakalis NMP, Ventikos YP, Byrne JV (2008) Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: technical note. Neuroradiology 50:341–347

    Article  PubMed  Google Scholar 

  27. Morales H, Kim M, Vivas E, Villa-Uriol MC, Larrabide I, Sola T, Guimaraens L, Frangi A (2011) How do coil configuration and packing density influence intra-aneurysmal hemodynamics? Am J Neuroradiol 32:1935–1941

    Article  PubMed  CAS  Google Scholar 

  28. Morbiducci U, Ponzini R, Gallo D, Bignardi C, Rizzo G (2013) Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J Biomech 46:102–109

    Article  PubMed  Google Scholar 

  29. Narracott A, Smith S, Lawford P, Liu H, Himeno R, Wilkinson I, Griffiths P, Hose R (2005) Development and validation of models for the investigation of blood clotting in idealized stenoses and cerebral aneurysms. J Artif Organs 8:56–62

    Article  PubMed  Google Scholar 

  30. Nixon AM, Gunel M, Sumpio BE (2010) The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg 112:1240–1253

    Article  PubMed  Google Scholar 

  31. Paál G, Ugron Á, Szikora I, Bojtár I (2007) Flow in simplified and real models of intracranial aneurysms. Int J Heat Fluid Flow 28:653–664

    Article  Google Scholar 

  32. Parlea L, Fahrig R, Holdsworth DW, Lownie SP (1999) An analysis of the geometry of saccular intracranial aneurysms. Am J Neuroradiol 20:1079–1089

    PubMed  CAS  Google Scholar 

  33. Qian Y, Takao H, Umezu M, Murayama Y (2011) Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results. Am J Neuroradiol 32:1948–1955

    Article  PubMed  CAS  Google Scholar 

  34. Schirmer CM, Malek AM (2010) Critical influence of framing coil orientation on intra-aneurysmal and neck region hemodynamics in a sidewall aneurysm model. Neurosurgery 67:1692–1702

    Article  PubMed  Google Scholar 

  35. Scott S, Ferguson GG, Roach MR (1972) Comparison of the elastic properties of human intracranial arteries and aneurysms. Can J Physiol Pharm 50:328–332

    Article  CAS  Google Scholar 

  36. Shimizu S, Kurata A, Takano M, Takagi H, Yamazaki H, Miyasaka Y, Fujii K (1999) Tissue response of a small saccular aneurysm after incomplete occlusion with a Guglielmi detachable coil. Am J Neuroradiol 20:546–548

    PubMed  CAS  Google Scholar 

  37. Sluzewski M, van Rooij WJ, Slob MJ, Bescós JO, Slump CH, Wijnalda D (2004) Relation between aneurysm volume, packing, and compaction in 145 cerebral aneurysms treated with coils 1. Radiology 231:653–658

    Article  PubMed  Google Scholar 

  38. Stiver SI, Porter PJ, Willinsky RA, Wallace MC (1998) Acute human histopathology of an intracranial aneurysm treated using Guglielmi detachable coils: case report and review of the literature. Neurosurgery 43:1203–1207

    Article  PubMed  CAS  Google Scholar 

  39. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Meth Fluids 65:308–323

    Article  Google Scholar 

  40. Tateshima S, Chien A, Sayre J, Cebral J, Viñuela F (2010) The effect of aneurysm geometry on the intra-aneurysmal flow condition. Neuroradiology 52:1135–1141

    Article  PubMed  Google Scholar 

  41. Tenjin H, Fushiki S, Nakahara Y, Masaki H, Matsuo T, Johnson CM, Ueda S (1995) Effect of Guglielmi detachable coils on experimental carotid artery aneurysms in primates. Stroke 26:2075–2080

    Article  PubMed  CAS  Google Scholar 

  42. Tippe A, Müller-Mohnssen H (1993) Shear dependence of the fibrin coagulation kinetics in vitro. Thromb Res 72:379–388

    Article  PubMed  CAS  Google Scholar 

  43. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Engrg 198:3613–3621

    Article  Google Scholar 

  44. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36:160–168

    Article  Google Scholar 

  45. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26:336–347

    Article  Google Scholar 

  46. Ugron Á, Szikora I, Paál G (2012) Haemodynamic changes induced by intrasaccular packing on intracranial aneurysms: a computational fluid dynamic study. Interven Med Appl Sci 4:78–84

    Article  Google Scholar 

  47. Valencia A, Munoz F, Araya S, Rivera R, Bravo E (2009) Comparison between computational fluid dynamics, fluid–structure interaction and computational structural dynamics predictions of flow-induced wall mechanics in an anatomically realistic cerebral aneurysm model. Int J Comp Fluid Dyn 23:649–666

    Article  Google Scholar 

  48. Van Doormaal MA, Kazakidi A, Wylezinska M, Hunt A, Tremoleda JL, Protti A, Bohraus Y, Gsell W, Weinberg PD, Ethier CR (2012) Haemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root. J R Soc Interface 9:2834–2844

    Article  PubMed  Google Scholar 

  49. Wei Y, Cotin S, Allard J, Fang L, Pan C, Ma S (2011) Interactive blood-coil simulation in real-time during aneurysm embolization. Comput Graph 35:422–430

    Article  Google Scholar 

  50. Wei Y, Cotin S, Allard J, Fang L, Pan C, Ma S (2011) Interactive blood-coil simulation in real-time during aneurysm embolization. Comput Graph 35:422–430

    Article  Google Scholar 

  51. Winn HR, Jane JA, Taylor J, Kaiser D, Britz GW (2002) Prevalence of asymptomatic incidental aneurysms: review of 4568 arteriograms. J Neurosurg 96:43–49

    Article  PubMed  Google Scholar 

  52. Wong KKL, Tu J, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D (2010) Cardiac flow component analysis. Med Eng Phys 32:174–188

    Article  PubMed  Google Scholar 

  53. Yamaguchi R, Ujiie H, Haida S, Nakazawa N, Hori T (2008) Velocity profile and wall shear stress of saccular aneurysms at the anterior communicating artery. Heart Vessel 23:60–66

    Article  Google Scholar 

  54. Zhao S, Ariff B, Long Q, Hughes A, Thom S, Stanton A, Xu X (2002) Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J Biomech 35:1367–1377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (A111101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyehan Rhee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, W., Han, M.H. & Rhee, K. Effects of framing coil shape, orientation, and thickness on intra-aneurysmal flow. Med Biol Eng Comput 51, 981–990 (2013). https://doi.org/10.1007/s11517-013-1073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1073-2

Keywords

Navigation