Skip to main content
Log in

Myocardial perfusion distribution and coronary arterial pressure and flow signals: clinical relevance in relation to multiscale modeling, a review

  • Special Issue - Review
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Coronary artery disease, CAD, is associated with both narrowing of the epicardial coronary arteries and microvascular disease, thereby limiting coronary flow and myocardial perfusion. CAD accounts for almost 2 million deaths within the European Union on an annual basis. In this paper, we review the physiological and pathophysiological processes underlying clinical decision making in coronary disease as well as the models for interpretation of the underlying physiological mechanisms. Presently, clinical decision making is based on non-invasive magnetic resonance imaging, MRI, of myocardial perfusion and invasive coronary hemodynamic measurements of coronary pressure and Doppler flow velocity signals obtained during catheterization. Within the euHeart project, several innovations have been developed and applied to improve diagnosis-based understanding of the underlying biophysical processes. Specifically, MRI perfusion data interpretation has been advanced by the gradientogram, a novel graphical representation of the spatiotemporal myocardial perfusion gradient. For hemodynamic data, functional indices of coronary stenosis severity that do not depend on maximal vasodilation are proposed and the Valsalva maneuver for indicating the extravascular resistance component of the coronary circulation has been introduced. Complementary to these advances, model innovation has been directed to the porous elastic model coupled to a one-dimensional model of the epicardial arteries. The importance of model development is related to the integration of information from different modalities, which in isolation often result in conflicting treatment recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Data from patients presented in this paper were obtained from study protocols approved by the Medical Ethics Committees of the AMC and KCL, and all patients gave written informed consent.

References

  1. Aarnoudse W, Fearon WF, Manoharan G, Geven M, van de Vosse F, Rutten M, De Bruyne B, Pijls NH (2004) Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation 110:2137–2142

    PubMed  Google Scholar 

  2. Algranati D, Kassab GS, Lanir Y (2010) Mechanisms of myocardium-coronary vessel interaction. Am J physiol. Heart circ physiol 298:H861–H873

    PubMed  CAS  Google Scholar 

  3. Arts MGJ (1978) A mathematical model of the dynamics of the left ventricle and the coronary circulation, Maastricht, the Netherlands

  4. Avolio AP (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18:709–718

    PubMed  CAS  Google Scholar 

  5. Becker A, Becker C (2013) Ct imaging of myocardial perfusion: possibilities and perspectives. J nucl cardiol: off publ Am Soc Nucl Cardiol 20:289–296

    Google Scholar 

  6. Beyar R, Sideman S (1987) Time-dependent coronary blood flow distribution in left ventricular wall. Am J Physiol 252:H417–H433

    PubMed  CAS  Google Scholar 

  7. Biot MA (1972) Theory of finite deformations of porous solids. Indiana Univ Math J 21:597–620

    Google Scholar 

  8. Bleasdale RA, Parker KH, Jones CJH (2003) Chasing the wave. Unfashionable but important new concepts in arterial wave travel. Am J Physiol Heart Circ Physiol 284:H1879–H1885

    PubMed  CAS  Google Scholar 

  9. Bowen RM (1980) Incompressible porous-media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148

    CAS  Google Scholar 

  10. Bruder O, Schneider S, Nothnagel D, Dill T, Hombach V, Schulz-Menger J, Nagel E, Lombardi M, van Rossum AC, Wagner A, Schwitter J, Senges J, Sabin GV, Sechtem U, Mahrholdt H (2009) EuroCMR (European Cardiovascular Magnetic Resonance) registry: results of the german pilot phase. J Am Coll Cardiol 54:1457–1466

    PubMed  Google Scholar 

  11. Bruinsma P, Arts T, Dankelman J, Spaan JA (1988) Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol 83:510–524

    PubMed  CAS  Google Scholar 

  12. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J med 356:830–840

    PubMed  CAS  Google Scholar 

  13. Chapelle D, Gerbeau JF, Sainte-Marie J, Vignon-Clementel IE (2010) A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech 46:91–101

    Google Scholar 

  14. Chapman SJ, Shipley RJ, Jawad R (2008) Multiscale modeling of fluid transport in tumors. B Math Biol 70:2334–2357

    Google Scholar 

  15. Chilian WM (1991) Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res 69:561–570

    PubMed  CAS  Google Scholar 

  16. Chiribiri A, Schuster A, Ishida M, Hautvast G, Zarinabad N, Morton G, Otton J, Plein S, Breeuwer M, Batchelor P, Schaeffter T, Nagel E (2012) Perfusion phantom: An efficient and reproducible method to simulate myocardial first-pass perfusion measurements with cardiovascular magnetic resonance. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine

  17. Chiribiri A, Hautvast GLTF, Lockie T, Schuster A, Bigalke B, Olivotti L, Redwood SR, Breeuwer M, Plein S, Nagel E. In press: Quantitative analysis of transmural perfusion gradients by high-resolution magnetic resonance versus fractional flow reserve for the assessment of coronary artery stenosis severity and location: JACC Cardiovasc Imaging; Feb 01 2013

  18. Christian TF, Aletras AH, Arai AE (2008) Estimation of absolute myocardial blood flow during first-pass mr perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J magn reson imaging: JMRI 27:1271–1277

    PubMed  Google Scholar 

  19. Cookson AN, Lee J, Michler C, Chabiniok R, Hyde E, Nordsletten DA, Sinclair M, Siebes M, Smith NP (2012) A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J Biomech 45:850–855

    PubMed  CAS  Google Scholar 

  20. Costa MA, Shoemaker S, Futamatsu H, Klassen C, Angiolillo DJ, Nguyen M, Siuciak A, Gilmore P, Zenni MM, Guzman L, Bass TA, Wilke N (2007) Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol 50:514–522

    PubMed  Google Scholar 

  21. Davies JE, Whinnett ZI, Francis DP, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J (2006) Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am J physiol. Heart circ physiol 290:H878–H885

    PubMed  CAS  Google Scholar 

  22. De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, Jagic N, Mobius-Winckler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engstrøm T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Jüni P, Fearon WF (2012) Fractional flow reserve–guided pci versus medical therapy in stable coronary disease. N Engl J med 367:991–1001

    PubMed  Google Scholar 

  23. De Luca G, Venegoni L, Iorio S, Giuliani L, Marino P (2011) Effects of increasing doses of intracoronary adenosine on the assessment of fractional flow reserve. JACC. Cardiovasc interv 4:1079–1084

    Google Scholar 

  24. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J (1992) Validation of a doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 85:1899–1911

    PubMed  CAS  Google Scholar 

  25. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Method Appl M 195:5685–5706

    Google Scholar 

  26. Fokkema DS, VanTeeffelen JW, Dekker S, Vergroesen I, Reitsma JB, Spaan JA (2005) Diastolic time fraction as a determinant of subendocardial perfusion. Am J physiol. Heart circ physiol 288:H2450–H2456

    PubMed  CAS  Google Scholar 

  27. Formaggia L, Lamponi D, Quarteroni A (2003) One-dimensional models for blood flow in arteries. J Eng Math 47:251–276

    Google Scholar 

  28. Gould KL (1978) Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 43:242–253

    PubMed  CAS  Google Scholar 

  29. Goyal A, Lee J, Lamata P, van den Wijngaard J, van Horssen P, Spaan J, Siebes M, Grau V, Smith NP (2013) Model-based vasculature extraction from optical fluorescence cryomicrotome images. IEEE Trans Med Imaging 32:56–72

    PubMed  Google Scholar 

  30. Greason KL, Schaff HV (2011) Myocardial revascularization by coronary arterial bypass graft: past, present, and future. Curr Probl Cardiol 36:325–368

    PubMed  Google Scholar 

  31. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (ce-marc): a prospective trial. Lancet 379:453–460

    PubMed  Google Scholar 

  32. Hautvast GLTF, Chiribiri A, Lockie T, Breeuwer M, Nagel E, Plein S (2011) Quantitative analysis of transmural gradients in myocardial perfusion magnetic resonance images. Magn reson med: off J Soc Magn Reson Med/Soc Magn Reson Med 66:1477–1487

    CAS  Google Scholar 

  33. Hoffman JI, Buckberg GD (1975) Pathophysiology of subendocardial ischaemia. Br Med J 1:76–79

    PubMed  CAS  Google Scholar 

  34. Hoffman JI, Spaan JA (1990) Pressure-flow relations in coronary circulation. Physiol Rev 70:331–390

    PubMed  CAS  Google Scholar 

  35. Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE (2012) A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging. JCMG 5:154–166

    Google Scholar 

  36. Hunter PJ, Borg TK (2003) Integration from proteins to organs: the physiome project. Nat Rev Mol Cell Biol 4:237–243

    PubMed  CAS  Google Scholar 

  37. Huo Y, Kaimovitz B, Lanir Y, Wischgoll T, Hoffman JI, Kassab GS (2009) Biophysical model of the spatial heterogeneity of myocardial flow. Biophys J 96:4035–4043

    PubMed  CAS  Google Scholar 

  38. Huo Y, Kassab GS (2012) Compensatory remodeling of coronary microvasculature maintains shear stress in porcine left-ventricular hypertrophy. J Hypertens 30:608–616

    PubMed  CAS  Google Scholar 

  39. Huyghe JM, Vancampen DH, Arts T, Heethaar RM (1991) A 2-phase finite-element model of the diastolic left-ventricle. J Biomech 24:527–538

    PubMed  CAS  Google Scholar 

  40. Huyghe JM, Arts T, Vancampen DH, Reneman RS (1992) Porous-medium finite-element model of the beating left-ventricle. Am J Physiol 262:H1256–H1267

    PubMed  CAS  Google Scholar 

  41. Huyghe JM, Vancampen DH (1995) Finite deformation-theory of hierarchically arranged porous solids. 2. Constitutive behavior. Int J Eng Sci 33:1873–1886

    Google Scholar 

  42. Ishida M, Morton G, Schuster A, Nagel E, Chiribiri A (2010) Quantitative assessment of myocardial perfusion MRI. Curr Cardiovasc Imaging Rep 3:65–73

    Google Scholar 

  43. Ishida M, Schuster A, Morton G, Chiribiri A, Hussain S, Paul M, Merkle N, Steen H, Lossnitzer D, Schnackenburg B, Alfakih K, Plein S, Nagel E (2011) Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J cardiovasc magn reson: off J Soc Cardiovasc Magn Reson 13:28

    Google Scholar 

  44. Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84

    PubMed  CAS  Google Scholar 

  45. Jerosch-Herold M (2010) Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:57. doi:10.1186/1532-429X-12-57

    PubMed  Google Scholar 

  46. Kassab GS, Rider CA, Tang NJ, Fung YC (1993) Morphometry of pig coronary arterial trees. Am J physiol 265:H350–H365

    PubMed  CAS  Google Scholar 

  47. Kassab GS, Molloi S (2001) Cross-sectional area and volume compliance of porcine left coronary arteries. Am J physiol. Heart circ physiol 281:H623–H628

    PubMed  CAS  Google Scholar 

  48. Kassab GS, Dotan Algranati D, Lanir Y (2013) Myocardial-vessel interaction: role of lv pressure and myocardial contractility. Medical & biological engineering & computing in press

  49. Kern MJ, Bach RG, Mechem CJ, Caracciolo EA, Aguirre FV, Miller LW, Donohue TJ (1996) Variations in normal coronary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease. J Am Coll Cardiol 28:1154–1160

    PubMed  CAS  Google Scholar 

  50. Kern MJ, Lerman A, Bech JW, De Bruyne B, Eeckhout E, Fearon WF, Higano ST, Lim MJ, Meuwissen M, Piek JJ, Pijls NH, Siebes M, Spaan JA (2006) Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the american heart association committee on diagnostic and interventional cardiac catheterization, council on clinical cardiology. Circulation 114:1321–1341

    PubMed  Google Scholar 

  51. Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38:3195–3209

    PubMed  CAS  Google Scholar 

  52. Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ (1997) Evaluation of endothelial shear stress and 3d geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3d reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 17:2061–2065

    PubMed  CAS  Google Scholar 

  53. Lee J, Smith NP (2008) Theoretical modeling in hemodynamics of microcirculation. Microcirculation 15:699–714

    PubMed  Google Scholar 

  54. Lee J, Smith NP (2012) The multi-scale modelling of coronary blood flow. Ann Biomed Eng 40(11):2399–2413

    PubMed  Google Scholar 

  55. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel E, Rezavi R, Redwood S, Plein S (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75

    PubMed  Google Scholar 

  56. Marques KM, Spruijt HJ, Boer C, Westerhof N, Visser CA, Visser FC (2002) The diastolic flow-pressure gradient relation in coronary stenoses in humans. J Am Coll Cardiol 39:1630–1636

    PubMed  Google Scholar 

  57. Marques KM, van Eenige MJ, Spruijt HJ, Westerhof N, Twisk J, Visser CA, Visser FC (2006) The diastolic flow velocity-pressure gradient relation and dpv50 to assess the hemodynamic significance of coronary stenoses. Am J physiol. Heart circ physiol 291:H2630–H2635

    PubMed  CAS  Google Scholar 

  58. May-Newman K, McCulloch AD (1998) Homogenization modeling for the mechanics of perfused myocardium. Prog Biophys Mol Biol 69:463–481

    PubMed  CAS  Google Scholar 

  59. McGeoch RJ, Oldroyd KG (2008) Pharmacological options for inducing maximal hyperaemia during studies of coronary physiology. Catheter Cardiovasc Interv 71:198–204

    PubMed  Google Scholar 

  60. Merkus D, Vergroesen I, Hiramatsu O, Tachibana H, Nakamoto H, Toyota E, Goto M, Ogasawara Y, Spaan JA, Kajiya F (2001) Stenosis differentially affects subendocardial and subepicardial arterioles in vivo. Am J physiol. Heart circ physiol 280:H1674–H1682

    PubMed  CAS  Google Scholar 

  61. Meuwissen M, Chamuleau SA, Siebes M, Schotborgh CE, Koch KT, de Winter RJ, Bax M, de Jong A, Spaan JA, Piek JJ (2001) Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation 103:184–187

    PubMed  CAS  Google Scholar 

  62. Meuwissen M, Siebes M, Chamuleau SAJ, van Eck-Smit BLF, Koch KT, de Winter RJ, Tijssen JGP, Spaan JAE, Piek JJ (2002) Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation 106:441–446

    PubMed  Google Scholar 

  63. Meuwissen M, Siebes M, Spaan JA, Piek JJ (2002) Rationale of combined intracoronary pressure and flow velocity measurements. Z Kardiol 91(Suppl 3):108–112

    PubMed  Google Scholar 

  64. Morton G, Jogiya R, Plein S, Schuster A, Chiribiri A, Nagel E (2012) Quantitative cardiovascular magnetic resonance perfusion imaging: inter-study reproducibility. Eur Heart J Cardiovasc Imaging 13:954–960

    PubMed  Google Scholar 

  65. Neubauer S (2007) The failing heart–an engine out of fuel. N Engl J med 356:1140–1151

    PubMed  Google Scholar 

  66. Noble D (2002) Modeling the heart–from genes to cells to the whole organ. Science 295:1678–1682

    PubMed  CAS  Google Scholar 

  67. Nordsletten D, McCormick M, Kilner PJ, Hunter P, Kay D, Smith NP (2011) Fluid-solid coupling for the investigation of diastolic and systolic human left ventricular function. Int J Numer Meth Bio 27:1017–1039

    Google Scholar 

  68. Panting JR, Gatehouse PD, Yang G-Z, Grothues F, Firmin DN, Collins P, Pennell DJ (2002) Abnormal subendocardial perfusion in cardiac syndrome x detected by cardiovascular magnetic resonance imaging. N Engl J med 346:1948–1953

    PubMed  Google Scholar 

  69. Parker KH, Jones CJ (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112:322–326

    PubMed  CAS  Google Scholar 

  70. Parker KH (2009) An introduction to wave intensity analysis. Med Biol Eng Comput 47:175–188

    PubMed  Google Scholar 

  71. Parker KH (2009) A brief history of arterial wave mechanics. Med Biol Eng Comput 47:111–118

    PubMed  Google Scholar 

  72. Patel AR, Antkowiak PF, Nandalur KR, West AM, Salerno M, Arora V, Christopher J, Epstein FH, Kramer CM (2010) Assessment of advanced coronary artery disease. JAC 56:561–569

    Google Scholar 

  73. Pijls N, Vanschaardenburgh P, Manoharan G, Boersma E, Bech J, Vantveer M, Bar F, Hoorntje J, Koolen J, Wijns W (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis 5-year follow-up of the defer study. J Am Coll Cardiol 49:2105–2111

    PubMed  Google Scholar 

  74. Pijls NH, Tonino PA (2011) The crux of maximum hyperemia: the last remaining barrier for routine use of fractional flow reserve. J Am Coll Cardiol Intv 4:1093–1095

    Google Scholar 

  75. Pijls NHJ, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87:1354–1367

    PubMed  CAS  Google Scholar 

  76. Plein S, Schwitter J, Suerder D, Greenwood JP, Boesiger P, Kozerke S (2008) K-space and time sensitivity encoding-accelerated myocardial perfusion mr imaging at 3.0 t: comparison with 1.5 t. Radiology 249:493–500

    PubMed  Google Scholar 

  77. Rolandi MC, Nolte F, van de Hoef TP, Remmelink M, Baan J, Piek JJ, Spaan JA, Siebes M (2012) Coronary wave intensity during the valsalva manoeuvre in humans reflects altered intramural vessel compression responsible for extravascular resistance. J Physiol 590:4623–4635. doi:10.1113/jphysiol.2012.229914

    Google Scholar 

  78. Schreiner W, Karch R, Neumann F, Neumann M (2000) Constrained constructive optimization of arterial tree models. In: Press OU, ed. Scaling in biology, Oxford, pp. 145–165

  79. Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the advise (adenosine vasodilator independent stenosis evaluation) study. J Am Coll Cardiol 59:1392–1402

    PubMed  CAS  Google Scholar 

  80. Sherwin SJ, Franke V, Peiro J, Parker K (2003) One-dimensional modelling of a vascular network in space-time variables. J Eng Math 47:217–250

    Google Scholar 

  81. Siebes M, Chamuleau SA, Meuwissen M, Piek JJ, Spaan JA (2002) Influence of hemodynamic conditions on fractional flow reserve: parametric analysis of underlying model. Am J physiol. Heart circ physiol 283:H1462–H1470

    PubMed  CAS  Google Scholar 

  82. Siebes M, Verhoeff BJ, Meuwissen M, de Winter RJ, Spaan JA, Piek JJ (2004) Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation 109:756–762

    PubMed  Google Scholar 

  83. Smith NP, Kassab GS (2001) Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models. Philos T Roy Soc A 359:1251–1262

    Google Scholar 

  84. Smith NP, Mulquiney PJ, Nash MP, Bradley CP, Nickerson DP, Hunter PJ (2002) Mathematical modelling of the heart: cell to organ. Chaos Soliton Fract 13:1613–1621

    CAS  Google Scholar 

  85. Smith NP, Pullen AJ, Hunter PJ (2002) An anatomically based model of transient coronary blood flow in the heart. SIAM J Appl Math 62:28

    Google Scholar 

  86. Smith NP (2004) A computational study of the interaction between coronary blood flow and myocardial mechanics. Physiol Meas 25:863–877

    PubMed  Google Scholar 

  87. Spaan J, Kolyva C, van den Wijngaard J, ter Wee R, van Horssen P, Piek J, Siebes M (2008) Coronary structure and perfusion in health and disease. Philos trans. Ser A, Math, phys, eng sci 366:3137–3153

    Google Scholar 

  88. Spaan JA, Breuls NP, Laird JD (1981) Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 49:584–593

    PubMed  CAS  Google Scholar 

  89. Spaan JA, ter Wee R, van Teeffelen JW, Streekstra G, Siebes M, Kolyva C, Vink H, Fokkema DS, VanBavel E (2005) Visualisation of intramural coronary vasculature by an imaging cryomicrotome suggests compartmentalisation of myocardial perfusion areas. Med Biol Eng Compu 43:431–435

    CAS  Google Scholar 

  90. Spaan JA, Piek JJ, Hoffman JI, Siebes M (2006) Physiological basis of clinically used coronary hemodynamic indices. Circulation 113:446–455

    PubMed  Google Scholar 

  91. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, vant Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, Investigators FS (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J med 360:213–224

    PubMed  CAS  Google Scholar 

  92. van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard JP, Spaan JA, Siebes M (2011) Coronary pressure-flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol 52:786–793

    PubMed  Google Scholar 

  93. van de Hoef TP, Nolte F, Damman P, Delewi R, Bax M, Chamuleau SA, Voskuil M, Siebes M, Tijssen JG, Spaan JA, Piek JJ, Meuwissen M (2012) Diagnostic accuracy of combined intracoronary pressure and flow velocity information during baseline conditions: adenosine-free assessment of functional coronary lesion severity. Circulation. Cardiovasc interv 5:508–514

    Google Scholar 

  94. van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard JP, Spaan JA, Siebes M (2012) Coronary pressure-flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol 52:786–793

    PubMed  Google Scholar 

  95. van den Wijngaard JP, Schwarz JC, van Horssen P, van Lier MG, Dobbe JG, Spaan JA, Siebes M (2013) 3d imaging of vascular networks for biophysical modeling of perfusion distribution within the heart. J Biomech 46:229–239. doi:10.1016/j.jbiomech.2012.11.027

    Google Scholar 

  96. VanBavel E, Spaan JA (1992) Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ res 71:1200–1212

    PubMed  CAS  Google Scholar 

  97. Vankan WJ, Huyghe JM, Janssen JD, Huson A, Hacking WJG, Schreiner W (1997) Finite element analysis of blood flow through biological tissue. Int J Eng Sci 35:375–385

    Google Scholar 

  98. Verberne HJ, Meuwissen M, Chamuleau SA, Verhoeff BJ, van Eck-Smit BL, Spaan JA, Piek JJ, Siebes M (2007) Effect of simultaneous intracoronary guidewires on the predictive accuracy of functional parameters of coronary lesion severity. Am J physiol. Heart circ physiol 292:H2349–H2355

    PubMed  CAS  Google Scholar 

  99. Verhoeff BJ, Siebes M, Meuwissen M, Atasever B, Voskuil M, de Winter RJ, Koch KT, Tijssen JG, Spaan JA, Piek JJ (2005) Influence of percutaneous coronary intervention on coronary microvascular resistance index. Circulation 111:76–82

    PubMed  Google Scholar 

  100. Verhoeff BJ, van de Hoef TP, Spaan JA, Piek JJ, Siebes M (2012) Minimal effect of collateral flow on coronary microvascular resistance in the presence of intermediate and noncritical coronary stenoses. Am J physiol. Heart circ physiol 303:H422–H428

    PubMed  CAS  Google Scholar 

  101. Waters SL, Alastruey J, Beard DA, Bovendeerd PH, Davies PF, Jayaraman G, Jensen OE, Lee J, Parker KH, Popel AS, Secomb TW, Siebes M, Sherwin SJ, Shipley RJ, Smith NP, van de Vosse FN (2011) Theoretical models for coronary vascular biomechanics: progress and challenges. Prog Biophys Mol Biol 104:49–76

    PubMed  Google Scholar 

  102. Watkins S, McGeoch R, Lyne J, Steedman T, Good R, McLaughlin M-J, Cunningham T, Bezlyak V, Ford I, Dargie HJ, Oldroyd KG (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120:2207–2213

    PubMed  Google Scholar 

  103. Westerhof N, Boer C, Lamberts RR, Sipkema P (2006) Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 86:1263–1308

    PubMed  CAS  Google Scholar 

  104. Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, Garg S, Huber K, James S, Knuuti J, Lopez-Sendon J, Marco J, Menicanti L, Ostojic M, Piepoli MF, Pirlet C, Pomar JL, Reifart N, Ribichini FL, Schalij MJ, Sergeant P, Serruys PW, Silber S, Sousa Uva M, Taggart D (2010) Guidelines on myocardial revascularization. Task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS); European Association for Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 31:2501–2555

    PubMed  Google Scholar 

  105. Wilke N, Simm C, Zhang J, Ellermann J, Ya X, Merkle H, Path G, Lüdemann H, Bache RJ, Ugurbil K (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn reson med: off J Soc Magn Reson Med/Soc Magn Reson Med 29:485–497

    CAS  Google Scholar 

  106. Wusten B, Buss DD, Deist H, Schaper W (1977) Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res Cardiol 72:636–650

    PubMed  CAS  Google Scholar 

  107. Young DF, Cholvin NR, Kirkeeide RL, Roth AC (1977) Hemodynamics of arterial stenoses at elevated flow rates. Circ Res 41:99–107

    PubMed  CAS  Google Scholar 

  108. Zarinabad N, Chiribiri A, Hautvast GLTF, Ishida M, Schuster A, Cvetkovic Z, Batchelor PG, Nagel E (2012) Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison. Magn reson med: off J Soc Magn Reson Med/Soc Magn Reson Med 68:1994–2004

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the European Community’s Seventh Framework Program (FP7-ICT-2007-224495: euHeart), the Netherlands Heart Foundation (grants 2000.090 and 2006B186) and Engineering and Physical Sciences Research Council (EP/G007527/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos A. E. Spaan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolte, F., Hyde, E.R., Rolandi, C. et al. Myocardial perfusion distribution and coronary arterial pressure and flow signals: clinical relevance in relation to multiscale modeling, a review. Med Biol Eng Comput 51, 1271–1286 (2013). https://doi.org/10.1007/s11517-013-1088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1088-8

Keywords

Navigation