Skip to main content

Advertisement

Log in

Enhanced automated sleep spindle detection algorithm based on synchrosqueezing

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Detection of sleep spindles is of major importance in the field of sleep research. However, manual scoring of spindles on prolonged recordings is very laborious and time-consuming. In this paper, we introduce a new algorithm based on synchrosqueezing transform for detection of sleep spindles. Synchrosqueezing is a powerful time–frequency analysis tool that provides precise frequency representation of a multicomponent signal through mode decomposition. Subsequently, the proposed algorithm extracts and compares the basic features of a spindle-like activity with its surrounding, thus adapting to an expert’s visual criteria for spindle scoring. The performance of the algorithm was assessed against the spindle scoring of one expert on continuous electroencephalogram sleep recordings from two subjects. Through appropriate choice of synchrosqueezing parameters, our proposed algorithm obtained a maximum sensitivity of 96.5 % with 98.1 % specificity. Compared to previously published works, our algorithm has shown improved performance by enhancing the quality of sleep spindle detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Babadi B, McKinney SM, Tarokh V, Ellenbogen JM (2012) DiBa: a data-driven Bayesian algorithm for sleep spindle detection. IEEE Trans Biomed Eng 59:483–493. doi:10.1109/TBME.2011.2175225

    Article  PubMed  Google Scholar 

  2. Berger H (1933) Uber das Elektroenkephalogramm des Menschen. Sechste mitteilung. Arch Phychiatr Nervenkr 99:555–574

    Article  Google Scholar 

  3. Boivin DB, Boudreau P, Tremblay GM (2012) Phototherapy and orange-tinted goggles for night-shift adaptation of police officers on patrol. Chronobiol Int 29:629–640

    Article  PubMed  Google Scholar 

  4. Campbell K, Kumar A, Hofman W (1980) Human and automatic validation of a phase-locked loop spindle detection system. Electroencephalogr Clin Neurophysiol 48:602–605

    Article  CAS  PubMed  Google Scholar 

  5. Clemens Z, Fabo D, Halasz P (2005) Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132:529–535. doi:10.1016/j.neuroscience.2005.01.011

    Article  CAS  PubMed  Google Scholar 

  6. Daubechies I, Lu J, Wu HT (2011) Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comput Harmon Anal 30:243–261. doi:10.1016/j.acha.2010.08.002

  7. Devuyst S, Dutoit T, Stenuit P, Kerkhofs M (2011) Automatic sleep spindles detection—overview and development of a standard proposal assessment method. Conf Proc IEEE Eng Med Biol Soc 2011:1713–1716. doi:10.1109/iembs.2011.6090491

    CAS  PubMed  Google Scholar 

  8. Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11:114–126. doi:10.1038/nrn2762

    Article  CAS  PubMed  Google Scholar 

  9. Duman F, Erdamar A, Erogul O, Telatar Z, Yetkin S (2009) Efficient sleep spindle detection algorithm with decision tree. Expert Syst Appl 36:9980–9985. doi:10.1016/j.eswa.2009.01.061

  10. Durka PJ, Matysiak A, Montes EM, Sosa PV, Blinowska KJ (2005) Multichannel matching pursuit and EEG inverse solutions. J Neurosci Methods 148:49–59. doi:10.1016/j.jneumeth.2005.04.001

    Article  PubMed  Google Scholar 

  11. Estevez PA, Held CM, Holzmann CA, Perez CA, Perez JP, Heiss J, Garrido M, Peirano P (2002) Polysomnographic pattern recognition for automated classification of sleep-waking states in infants. Med Biol Eng Comput 40:105–113

    Article  CAS  PubMed  Google Scholar 

  12. Fogel SM, Smith CT (2011) The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev 35:1154–1165. doi:10.1016/j.neubiorev.2010.12.003

    Article  PubMed  Google Scholar 

  13. Grigg-Damberger M, Gozal D, Marcus CL, Quan SF, Rosen CL, Chervin RD, Wise M, Picchietti DL, Sheldon SH, Iber C (2007) The visual scoring of sleep and arousal in infants and children. J Clin Sleep Med 3:201–240

    PubMed  Google Scholar 

  14. Güneş S, Dursun M, Polat K, Yosunkaya Ş (2011) Sleep spindles recognition system based on time and frequency domain features. Expert Syst Appl 38:2455–2461. doi:10.1016/j.eswa.2010.08.034

  15. Hao YL, Ueda Y, Ishii N (1992) Improved procedure of complex demodulation and an application to frequency analysis of sleep spindles in EEG. Med Biol Eng Comput 30:406–412

    Article  CAS  PubMed  Google Scholar 

  16. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond. Ser A 454:903–995 doi:10.1098/rspa.1998.0193

  17. Huupponen E, Gomez-Herrero G, Saastamoinen A, Varri A, Hasan J, Himanen SL (2007) Development and comparison of four sleep spindle detection methods. Artif Intell Med 40:157–170. doi:10.1016/j.artmed.2007.04.003

    Article  PubMed  Google Scholar 

  18. Huupponen E, Himanen SL, Hasan J, Varri A (2003) Automatic analysis of electro-encephalogram sleep spindle frequency throughout the night. Med Biol Eng Comput 41:727–732

    Article  CAS  PubMed  Google Scholar 

  19. Huupponen E, Varri A, Himanen SL, Hasan J, Lehtokangas M, Saarinen J (2000) Optimization of sigma amplitude threshold in sleep spindle detection. J Sleep Res 9:327–334

    Article  CAS  PubMed  Google Scholar 

  20. Iber C, Ancoli-Israel S, Chesson A Jr, Quan SF (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine, Westchester, IL

    Google Scholar 

  21. Jaleel A, Ahmed B, Tafreshi R, Boivin DB, Streletz L, Haddad N (2014) Improved spindle detection through intuitive pre-processing of electroencephalogram. J Neurosci Methods 233:1–12. doi:10.1016/j.jneumeth.2014.05.009

    Article  PubMed  Google Scholar 

  22. Klemm M, Haueisen J, Ivanova G (2009) Independent component analysis: comparison of algorithms for the investigation of surface electrical brain activity. Med Biol Eng Comput 47:413–423. doi:10.1007/s11517-009-0452-1

    Article  PubMed  Google Scholar 

  23. Ktonas PY, Golemati S, Xanthopoulos P, Sakkalis V, Ortigueira MD, Tsekou H, Zervakis M, Paparrigopoulos T, Bonakis A, Economou NT, Theodoropoulos P, Papageorgiou SG, Vassilopoulos D, Soldatos CR (2009) Time-frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: possibility for dementia biomarkers? J Neurosci Methods 185:133–142. doi:10.1016/j.jneumeth.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  24. Loomis AL, Harvey EN, Hobart G (1935) Potential rhythms of the cerebral cortex during sleep. Science (New York, NY) 81:597–598. doi:10.1126/science.81.2111.597

    Article  CAS  Google Scholar 

  25. Meignen S, Oberlin T, McLaughlin S (2012) A new algorithm for multicomponent signals analysis based on synchrosqueezing: with an application to signal sampling and denoising. IEEE Trans Signal Process 60:5787–5798. doi:10.1109/TSP.2012.2212891

    Article  Google Scholar 

  26. Noachtar S, Binnie C, Ebersole J, Mauguiere F, Sakamoto A, Westmoreland B (1999) A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. The international federation of clinical neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:21–41

    CAS  PubMed  Google Scholar 

  27. Nobach H, Tropea C, Cordier L, Bonnet J-P, Delville J, Lewalle J, Farge M, Schneider K, Adrian R (2007) Review of some fundamentals of data processing. In: Tropea C, Yarin A, Foss J (eds) Springer handbook of experimental fluid mechanics. Springer, Berlin Heidelberg, pp 1337–1398

    Chapter  Google Scholar 

  28. Nonclercq A, Urbain C, Verheulpen D, Decaestecker C, Van Bogaert P, Peigneux P (2013) Sleep spindle detection through amplitude-frequency normal modelling. J Neurosci Methods 214:192–203. doi:10.1016/j.jneumeth.2013.01.015

    Article  PubMed  Google Scholar 

  29. Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115. doi:10.1093/biomet/41.1-2.100

    Article  Google Scholar 

  30. Petit D, Gagnon JF, Fantini ML, Ferini-Strambi L, Montplaisir J (2004) Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res 56:487–496. doi:10.1016/j.jpsychores.2004.02.001

    Article  PubMed  Google Scholar 

  31. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Public Health Service, US Government Printing Office, Washington DC

    Google Scholar 

  32. Schabus M, Gruber G, Parapatics S, Sauter C, Klosch G, Anderer P, Klimesch W, Saletu B, Zeitlhofer J (2004) Sleep spindles and their significance for declarative memory consolidation. Sleep 27:1479–1485

    PubMed  Google Scholar 

  33. Schonwald SV, de Santa-Helena EL, Rossatto R, Chaves ML, Gerhardt GJ (2006) Benchmarking matching pursuit to find sleep spindles. J Neurosci Methods 156:314–321. doi:10.1016/j.jneumeth.2006.01.026

    Article  PubMed  Google Scholar 

  34. Schönwald SV, Gerhardt GJL, de Santa-Helena EL, Chaves MLF (2003) Characteristics of human EEG sleep spindles assessed by Gabor transform. Physica A 327:180–184. doi:10.1016/S0378-4371(03)00473-4

  35. Sciarretta G, Bricolo A (1970) Automatic detection of sleep spindles by analysis of harmonic components. Med Biol Eng 8:517–519

    Article  CAS  PubMed  Google Scholar 

  36. Shimada T, Shiina T, Saito Y (2000) Detection of characteristic waves of sleep EEG by neural network analysis. IEEE Trans Biomed Eng 47:369–379. doi:10.1109/10.827301

    Article  CAS  PubMed  Google Scholar 

  37. Thakur G, Brevdo E, Fuckar NS, Wu H-T (2013) The synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. Signal Process 93:1079–1094. doi:10.1016/j.sigpro.2012.11.029

    Article  Google Scholar 

  38. Ventouras EM, Monoyiou EA, Ktonas PY, Paparrigopoulos T, Dikeos DG, Uzunoglu NK, Soldatos CR (2005) Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study. Comput Methods Programs Biomed 78:191–207. doi:10.1016/j.cmpb.2005.02.006

    Article  PubMed  Google Scholar 

  39. Wilson SB, Harner RN, Duffy FH, Tharp BR, Nuwer MR, Sperling MR (1996) Spike detection. I. Correlation and reliability of human experts. Electroencephalogr Clin Neurophysiol 98:186–198

    Article  CAS  PubMed  Google Scholar 

  40. Yi-Hsin C, Hau-Tieng W, Shu-Shya H, Chi-Tai K, Yung-Hsin Y (2011) ECG-derived respiration and instantaneous frequency based on the synchrosqueezing transform: application to patients with atrial fibrillation. arXiv:1105.1571 [math.NA]

  41. Zeitlhofer J, Gruber G, Anderer P, Asenbaum S, Schimicek P, Saletu B (1997) Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 6:149–155

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muammar M. Kabir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.M., Tafreshi, R., Boivin, D.B. et al. Enhanced automated sleep spindle detection algorithm based on synchrosqueezing. Med Biol Eng Comput 53, 635–644 (2015). https://doi.org/10.1007/s11517-015-1265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1265-z

Keywords

Navigation