Skip to main content

Advertisement

Log in

Stress distribution in a premolar 3D model with anisotropic and isotropic enamel

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this study was to compare the areas of stress concentration in a three-dimensional (3D) premolar tooth model with anisotropic or isotropic enamel using the finite element method. A computed tomography was imported to an image processing program to create the tooth model which was exported to a 3D modeling program. The mechanical properties and loading conditions were prescribed in Abaqus. In order to evaluate stresses, axial and oblique loads were applied simulating realistic conditions. Compression stress was observed on the side of load application, and tensile stress was observed on the opposite side. Tensile stress was concentrated mainly in the cervical region and in the alveolar insertion bone. Although stress concentration analyses of the isotropic 3D models produced similar stress distribution results when compared to the anisotropic models, tensile stress values shown by anisotropic models were smaller than the isotropic models. Oblique loads resulted in higher values of tensile stresses, which concentrate mainly in the cervical area of the tooth and in the alveolar bone insertion. Anisotropic properties must be utilized in enamel stress evaluation in non-carious cervical lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bajaj D, Arola D (2009) Role of prism decussation on fatigue crack growth and fracture of human enamel. Acta Biomater 5:3045–3056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Benzing UR, Gall H, Weber H (1995) Biomechanical aspects of two-implant-prosthetic concepts for edentulous maxillae. Int J Oral Maxilofac Implants 2:188–198

    Google Scholar 

  3. Borcic J, Anic I, Smojver I, Catic A, Miletic I, Ribaric SP (2005) 3D finite element model and cervical lesion formation in normal occlusion and in malocclusion. J Oral Rehabil 32:504–510

    Article  CAS  PubMed  Google Scholar 

  4. Dejak B, Mlotkowski A, Romanowicz M (2005) Finite element analysis of mechanism of cervical lesion formation in simulated molars during mastication and parafunction. J Prost Dent 94:520–529

    Article  Google Scholar 

  5. Fernandes CP, Chevitarese O (1991) The orientation and direction of rods in dental enamel. J Prost Dent 65:793–800

    Article  CAS  Google Scholar 

  6. Ferrario VF, Sforza C, Serrao G, Dellavia C, Tartaglia GM (2004) Single tooth bite in young adults. J Oral Rehabil 31:18–22

    Article  CAS  PubMed  Google Scholar 

  7. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101

    Article  PubMed  Google Scholar 

  8. Gao J, Xua W, Dingb Z (2006) 3D finite element mesh generation of complicated tooth model based on CT slices. Comput Methods Progr Biomed 82:97–105

    Article  Google Scholar 

  9. Giannini M, Soares CJ, Carvalho RM (2004) Ultimate tensile strength of tooth structures. Dent Mater 20:322–329

    Article  PubMed  Google Scholar 

  10. Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Holbrook WB (1981) Occlusal forces during chewing and swallowing as measured by sound transmission. J Prost Dent 46:443–449

    Article  CAS  Google Scholar 

  11. Grippo J (1991) Abfractions: a new classification of hard tissue lesions of teeth. J Esthet Dent 3:14–19

    Article  CAS  PubMed  Google Scholar 

  12. Ichim I, Lib Q, Loughranc J, Swaina MV, Kiesere J (2007) Restoration of non-carious cervical lesions Part I. Modelling of restorative fracture. Dent Mater 23:1553–1561

    Article  CAS  PubMed  Google Scholar 

  13. Las Casas EB, Cornacchia TP, Gouvêa PH, Cimini JRCA (2003) Abfraction and anisotropy effects of prism orientation on stress distribution. Comput Methods Biomech Biomed Eng 6:65–73

    Article  Google Scholar 

  14. Lee WC, Eakle WS (1984) Possible role of tensile stress in the etiology of cervical erosive lesions of teeth. J Prost Dent 52:374–380

    Article  CAS  Google Scholar 

  15. Lee HE, Lin CL, Wang CH, Cheng CH, Chang CH (2002) Stresses at the cervical lesion of maxillary premolar—a finite element investigation. J Dent 30:283–290

    Article  CAS  PubMed  Google Scholar 

  16. Litonjua LA, Bush PJ, Andreana S, Tobias TS (2004) Effects of occlusal load on cervical lesions. J Oral Rehabil 31:225–232

    Article  CAS  PubMed  Google Scholar 

  17. Lynch CD, O’Sullivan VR, Dockery P, McGillycuddy CT, Sloan AJ (2010) Hunter–Schreger band patterns in human tooth enamel. J Anat 217:106–115

    PubMed Central  PubMed  Google Scholar 

  18. Miura J, Maeda Y, Nakai H, Zako M (2009) Multiscale analysis of stress distribution in teeth under applied forces. Dent Mater 25:67–73

    Article  CAS  PubMed  Google Scholar 

  19. Okeson J (2008) Treatment of temporomandibular disorders and occlusion in: determinants of occlusal morphology, 6th edn. Elsevier, Rio de Janeiro, pp 89–102

    Google Scholar 

  20. Palamara D, Palamara JEA, Tyas MJ, Messer HH (2000) Strain patterns in cervical enamel of teeth subjected to occlusal loading. Dent Mater 16:412–419

    Article  CAS  PubMed  Google Scholar 

  21. Rees J (2002) The effect of variation in occlusal loading on the development of abfraction lesions: a finite element study. J Oral Rehabil 29:188–193

    Article  CAS  PubMed  Google Scholar 

  22. Rees JS, Jacobsen PH (1997) Elastic modulus of the periodontal ligament. Biomaterials 18:995–999

    Article  CAS  PubMed  Google Scholar 

  23. Robinson C, Kirkham J, Brookes SJ, Bonass WA, Shore RC (1995) The chemistry of enamel development. Int J Dev Biol 39:145–152

    CAS  PubMed  Google Scholar 

  24. Roy S, Basu B (2008) Mechanical and tribological characterization of human tooth. Mater Character 52:747–756

    Article  Google Scholar 

  25. Sano H, Ciucchi B, Matthews MG, Pashley DH (1994) Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 73:1205–1211

    CAS  PubMed  Google Scholar 

  26. Spears IR (1997) A three-dimensional finite element model of prismatic enamel: a re-appraisal of the data on the Young’s modulus of enamel. J Dent Res 76:1690–1697

    Article  CAS  PubMed  Google Scholar 

  27. Spears IR, Noort RV, Crompton GE, Cardew Howard IC (1993) The effects of enamel anisotropy on the distribution of stress in a tooth. J Dent Res 72:1526–1531

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka M, Naito T, Yokota M, Kohno M (2003) Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J Oral Rehabil 30:60–67

    Article  CAS  PubMed  Google Scholar 

  29. White SN, Luo W, Paine ML, Fong H, Sarikaya M, Snead ML (2001) Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel biological. J Dent Res 80:321–326

    Article  CAS  PubMed  Google Scholar 

  30. Wood I, Jawad Z, Paisley C, Brunton P (2008) Non-carious cervical tooth surface loss: a literature review. J Dent 36:759–766

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The student received scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq#132229/2011-0). We thank the Pró-reitoria de Pesquisa da UFMG for the English review.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laís S. Munari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munari, L.S., Cornacchia, T.P.M., Moreira, A.N. et al. Stress distribution in a premolar 3D model with anisotropic and isotropic enamel. Med Biol Eng Comput 53, 751–758 (2015). https://doi.org/10.1007/s11517-015-1289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1289-4

Keywords

Navigation