Skip to main content
Log in

Prediction of drug-induced eosinophilia adverse effect by using SVM and naïve Bayesian approaches

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Drug-induced eosinophilia is a potentially life-threatening adverse effect; clinical manifestations, eosinophilia–myalgia syndrome, mainly include severe skin eruption, fever, hematologic abnormalities, and organ system dysfunction. Using experimental methods to evaluate drug-induced eosinophilia is very complicated, time-consuming, and costly in the early stage of drug development. Thus, in this investigation, we established computational prediction models of drug-induced eosinophilia using SVM and naïve Bayesian approaches. For the SVM modeling, the overall prediction accuracy for the training set by means of fivefold cross-validation is 91.6 and for the external test set is 82.9 %. For the naïve Bayesian modeling, the overall prediction accuracy for the training set is 92.5 and for the external test set is 85.4 %. Moreover, some molecular descriptors and substructures considered as important for drug-induced eosinophilia were identified. Thus, we hope the prediction models of drug-induced eosinophilia built in this work should be applied to filter early-stage molecules for potential eosinophilia adverse effect, and the selected molecular descriptors and substructures of toxic compounds should be taken into consideration in the design of new candidate drugs to help medicinal chemists rationally select the chemicals with the best prospects to be effective and safe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allen JA, Varga J (2014) Encyclopedia of toxicology, 3rd edition from Philip Wexler. Elsevier, New York

    Google Scholar 

  2. Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer, New York

    Book  Google Scholar 

  3. Blackburn WD (1997) Eosinophilia myalgia syndrome. Semin Arthritis Rheum 26:788–793

    Article  PubMed  Google Scholar 

  4. Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Addison-Wesley, Reading

    Google Scholar 

  5. Dent G, Loweth SC, Hasan AM, Leslie FM (2014) Synergic production of neutrophil chemotactic activity by colonic epithelial cells and eosinophils. Immunobiology 219:793–797

    Article  CAS  PubMed  Google Scholar 

  6. Ekins S (2014) Progress in computational toxicology. J Pharm Toxicol Methods 69:115–140

    Article  CAS  Google Scholar 

  7. Ekins S, Williams AJ, Xu JJ (2010) A predictive ligand-based Bayesian model for human drug-induced liver injury. Drug Metab Dispos 38:2302–2308

    Article  CAS  PubMed  Google Scholar 

  8. González-Díaz H, Tenorio E, Castañedo N, Santana L, Uriarte E (2005) 3D QSAR Markov model for drug-induced eosinophilia—theoretical prediction and preliminary experimental assay of the antimicrobial drug G1. Bioorg Med Chem 13:1523–1530

    Article  PubMed  Google Scholar 

  9. Gotlib J (2005) Molecular classification and pathogenesis of eosinophilic disorders. Acta Haematol 114:7–25

    Article  CAS  PubMed  Google Scholar 

  10. Grime KH, Barton P, McGinnity DF (2013) Application of in silico, in vitro and preclinical pharmacokinetic data for the effective and efficient prediction of human pharmacokinetics. Mol Pharmaceutics 10:1191–1206

    Article  CAS  Google Scholar 

  11. Hardman JG, Limbird LE, Gilman AG (1996) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  12. Keerthi S, Sindhwani V, Chapelle O (2007) An efficient method for gradient-based adaptation of hyperparameters in SVM models. In: Schölkopf B, Platt J, Hofmann T (eds) Advances in neural information processing systems ~20 (NIPS ~2006), Vancouver, Canada

  13. Kimber I, Humphris C, Westmoreland C, Alepee N, Dal Negro G, Manou I (2011) Computational chemistry, systems biology and toxicology. Harnessing the chemistry of life: revolutionizing toxicology. A commentary. J Appl Toxicol 31:206–209

    Article  CAS  PubMed  Google Scholar 

  14. Li AP (2011) Drug discovery and development—present and future. In: Kapetanović I (ed) Critical human hepatocyte-based in vitro assays for the evaluation of adverse drug effects. InTech, USA

    Google Scholar 

  15. Lindgren CE, Walker LA, Bolton P (1991) l-tryptophan induced eosinophilia–myalgia syndrome. J R Soc Health 111:29–30

    Article  CAS  PubMed  Google Scholar 

  16. Lucasius CB, Kateman G (1993) Understanding and using genetic algorithms. Part 1. Concepts, properties and context. Chemometr Intell Lab 19:1–33

    Article  CAS  Google Scholar 

  17. Magni P, Bellazzi R, Nauti A, Patrini C, Rindi G (2001) Compartmental model identification based on an empirical Bayesian approach: the case of thiamine kinetics in rats. Med Biol Eng Comput 39:700–706

    Article  CAS  PubMed  Google Scholar 

  18. Milaraa J, Martinez-Losac M, Sanzd C, Almudéverc P, Peiróc T, Serranoc A, Morcilloe EJ, Zaragozág C, Cortijoa J (2013) Bafetinib inhibits functional responses of human eosinophils in vitro. Eur J Pharmacol 715:172–180

    Article  Google Scholar 

  19. Modi S, Hughes M, Garrow A, White A (2012) The value of in silico chemistry in the safety assessment of chemicals in the consumer goods and pharmaceutical industries. Drug Discov Today 17:135–142

    Article  CAS  PubMed  Google Scholar 

  20. Pereira MC, Oliveira DT, Kowalski LP (2011) The role of eosinophils and eosinophil cationic protein in oral cancer: a review. Arch Oral Biol 56:353–358

    Article  CAS  PubMed  Google Scholar 

  21. Selick HE, Beresford AP, Tarbit MH (2002) The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today 7:109–116

    Article  PubMed  Google Scholar 

  22. Sidransky H, Verney E, Cosgrove JW, Latham PS, Mayeno AN (1994) Studies with 1,1’-ethylidenebis(tryptophan), a contaminant associated with l-tryptophan implicated in the eosinophilia–myalgia syndrome. Toxicol Appl Pharmacol 126:108–113

    Article  CAS  PubMed  Google Scholar 

  23. Singh V, Gomez VV, Swamy SG, Vikas B (2009) Approach to a case of eosinophilia. Ind J Aerospace Med 53:58–64

    CAS  Google Scholar 

  24. Tefferi A (2005) Blood eosinophilia: a new paradigm in disease classification, diagnosis, and treatment. Mayo Clinic Proc 80:75–83

    Article  Google Scholar 

  25. Valent P, Gleich GJ, Reiter A, Roufosse F, Weller PF, Hellmann A, Metzgeroth G, Leiferman KM, Arock M, Sotlar K, Butterfield JH, Cerny-Reiterer S, Mayerhofer M, Vandenberghe P, Haferlach T, Bochner BS, Gotlib J, Horny HP, Simon HU, Klion AD (2012) Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Rev Hematol 5:157–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  27. VCCLAB (2005) Virtual computational chemistry laboratory. Available at : http://www.vcclab.org

  28. Vedani A, Smiesko M (2009) In silico toxicology in drug discovery—concepts based on three-dimensional models. Altern Lab Anim 37:477–496

    CAS  PubMed  Google Scholar 

  29. Weller PF (1991) The immunobiology of eosinophils. N Engl J Med 324:1110–1118

    Article  CAS  PubMed  Google Scholar 

  30. Yang SY, Huang Q, Li LL, Ma CY, Zhang H, Bai R, Teng QZ, Xiang ML, Wei YQ (2009) An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif Intell Med 46:155–163

    Article  PubMed  Google Scholar 

  31. Zhang H, Chen QY, Xiang ML, Ma CY, Huang Q, Yang SY (2009) In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicol In Vitro 23:134–140

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H, Li W, Xie Y, Wang WJ, Li LL, Yang SY (2011) Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method. Toxicol In Vitro 25:1848–1854

    Article  CAS  PubMed  Google Scholar 

  33. Zientek M, Stoner C, Ayscue R, Klug-McLeod J, Jiang Y, West M, Collins C, Ekins S (2010) Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition. Chem Res Toxicol 23:664–676

    Article  CAS  PubMed  Google Scholar 

  34. Zurlo J, Rudacille D, Goldberg AM (1994) Animals and alternatives in testing: history: science and ethics. Mary Ann Liebert, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Project for Enhancing the Research Capability of Young Teachers in Northwest Normal University (NWNU-LKQN-12-7).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11517_2015_1321_MOESM1_ESM.rar

The structures of the training set (TrainingSet_107.sd) and test set (TestSet_41.sd) molecules, which is available to authorized users. (RAR 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yu, P., Xiang, ML. et al. Prediction of drug-induced eosinophilia adverse effect by using SVM and naïve Bayesian approaches. Med Biol Eng Comput 54, 361–369 (2016). https://doi.org/10.1007/s11517-015-1321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1321-8

Keywords

Navigation