Skip to main content

Advertisement

Log in

Integration of Different Risk Assessment Tools to Improve Stratification of Patients with Coronary Artery Disease

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) causes unaffordable social and health costs that tend to increase as the European population ages. In this context, clinical guidelines recommend the use of risk scores to predict the risk of a cardiovascular disease event. Some useful tools have been developed to predict the risk of occurrence of a cardiovascular disease event (e.g. hospitalization or death). However, these tools present some drawbacks. These problems are addressed through two methodologies: (i) combination of risk assessment tools: fusion of naïve Bayes classifiers complemented with a genetic optimization algorithm and (ii) personalization of risk assessment: subtractive clustering applied to a reduced-dimensional space to create groups of patients. Validation was performed based on two ACS-NSTEMI patient data sets. This work improved the performance in relation to current risk assessment tools, achieving maximum values of sensitivity, specificity, and geometric mean of, respectively, 79.8, 83.8, and 80.9 %. Additionally, it assured clinical interpretability, ability to incorporate of new risk factors, higher capability to deal with missing risk factors and avoiding the selection of a standard CVD risk assessment tool to be applied in the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alpert J et al (2000) Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am College Cardiol 36:959–969

    Article  CAS  Google Scholar 

  2. Antman E et al (2000) The TIMI risk score for unstable Angina/non-St elevation MI—a method for prognostication and therapeutic decision making. JAMA 284:835–842

    Article  CAS  PubMed  Google Scholar 

  3. Ayers S et al (2007) Cambridge handbook of psychology, health and medicine. Cambridge University Press, Cambridge. ISBN: 978-0521605106

  4. Bauer E et al (1998) An empirical comparison of voting classification algorithms: bagging, boosting and variants. Mach Learn 36:1–38

    Google Scholar 

  5. Bertrand M et al (2002) Management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 23:1809–1840

    Article  PubMed  Google Scholar 

  6. Boersma E et al (2002) Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation: results from an international trial of 9461 patients. Circulation 101:2557–2657

    Article  Google Scholar 

  7. Bueno H et al (2012) Use of risk scores in acute coronary syndromes. Eur Heart J 98:162–168

    Article  Google Scholar 

  8. CEC/EU (2005) Confronting demographic change: a new solidarity between the generations—Green paper. Commission of the European Communities. http://eur-lex.europa.eu/LexUriServ. Accessed in December 2012

  9. Conroy R et al (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24:987–1003

    Article  CAS  PubMed  Google Scholar 

  10. Cordella L et al (1999) Reliability parameters to improve combination strategies in multi-expert systems. Pattern Anal Appl 2:205–214

    Article  Google Scholar 

  11. D’Agostino R et al (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117:743–757

    Article  PubMed  Google Scholar 

  12. EHN (2009) Healthy hearts for all—annual report 2009. European Heart Network. http://www.ehnheart.org/publications/annual-reports.html. Accessed in December 2012

  13. Eiben A et al (2003) Introduction to evolutionary computing. Springer, Berlin. ISBN: 978-3540401841

  14. Friedman N et al (1997) Bayesian network classifiers. Mach Learn 29(131–16):3

    Google Scholar 

  15. Gonçalves P et al (2005) TIMI, PURSUIT and GRACE risk scores: sustained prognostic value and interaction with revascularization in NSTE-ACS. Eur Heart J 26:865–872

    Article  Google Scholar 

  16. Graham I et al (2007) Guidelines on preventing cardiovascular disease in clinical practice: executive summary. Eur Heart J 28:2375–2414

    Article  PubMed  Google Scholar 

  17. Hammouda K (2000) A comparative study of data clustering techniques. SYDE 625: tools of intelligent systems design. Course Project, University of Waterloo

  18. Han J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann. ISBN: 978-0123814791

  19. He H et al (2009) Learning from imbalanced datasets. IEEE Trans Knowl Data Eng 21:1263–1284

    Article  Google Scholar 

  20. Heckerman D, Geiger D, Chickering D (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20:197–243

    Google Scholar 

  21. Kirkwood B (2002) Medical statistics, 2nd edn. Blackwell Science. ISBN: 978-0-86542-871-2

  22. Lee D et al (2007) Nonlinear dimensionality reduction. Springer, Berlin. ISBN: 978-0387393506

  23. Maaten L et al (2009) Dimensionality reduction: a comparative review. TiCC TR 2009–005, Tilburg University

  24. Nandi R et al (2006) Classification of breast masses in mammograms using genetic programming and feature selection. Med Biol Eng Comput 44:683–694

    Article  CAS  PubMed  Google Scholar 

  25. Reiter H, Maglaveras N (2009) Heartcycle: compliance and effectiveness in HF and CAD closed-loop management. In: Proceedings of the 32nd IEEE EMBC conference, IEEE Press, pp 299–302

  26. Ricotta J et al (2008) Cardiovascular disease management: the need for better diagnostics. Med Biol Eng Comput 46:1059–1068

    Article  PubMed  Google Scholar 

  27. Samsa G et al (2005) Combining information from multiple data sources to create multivariable risk models: illustration and preliminary assessment of a new method. J Biomed Biotechnol 2:113–123

    Article  Google Scholar 

  28. Siontis G et al (2012) Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ 344:e3318

    Article  PubMed  Google Scholar 

  29. Steyerberg W (2009) Clinical prediction models—a practical approach to development. Validation and updating. Statistics for biology and health. Springer, Berlin. ISBN: 978-0-387-77243-1

  30. Supervised Kotsiantis S, Learning Machine (2007) A review of classification techniques. Informatica 31(249–26):8

    Google Scholar 

  31. Tang E et al (2007) Global Registry of Acute Coronary Events (GRACE) hospital discharge risk scores accurately predicts long term mortality post-acute coronary syndrome. Am Heart J 153:30–35

    Google Scholar 

  32. Tsymbal A et al (2003) Ensemble feature selection with the simple Bayesian classification. Inf Fusion 4:87–100

    Article  Google Scholar 

  33. Twardy C (2005) Knowledge engineering cardiovascular Bayesian networks from the literature. Technical Report 2005/170, Monash University

  34. Webb G et al (2005) Not so naïve Bayes: aggregating one-dependence estimators. Mach Learn 58:5–24

    Article  Google Scholar 

  35. WHO (2009) Cardiovascular diseases (CVDs). World Health Organization, fact sheet n° 317. http://www.who.int/mediacentre/factsheets/fs317. Accessed November 2012)

  36. WHO (2011) BMI classification. World Health Organization. http://apps.who.int/bmi/. Accessed on May 2011

  37. Yan A et al (2007) Risk scores for risk stratification in acute coronary syndromes: useful but simpler is not necessarily better. Eur Heart J 28:1072–1078

    Article  PubMed  Google Scholar 

  38. Yang Y, Webb G (2002) A comparative study of discretization methods for naïve Bayes classifiers. In: Proceedings of the Pacific Rim knowledge acquisition workshop (PKAW), pp 159–173

  39. Yuan Y (2005) Multiple imputation for missing data: concepts and new development. SAS Institute Inc, Cary

    Google Scholar 

  40. Zheng F et al (2005) A comparative study of semi-naïve Bayes methods in classification learning. In: Proceedings of the 4th Australasian data mining conference, pp 141–156

  41. Zheng W et al (2011) Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med 364:8

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by HeartCycle EU project (FP7-216695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Paredes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paredes, S., Rocha, T., de Carvalho, P. et al. Integration of Different Risk Assessment Tools to Improve Stratification of Patients with Coronary Artery Disease. Med Biol Eng Comput 53, 1069–1083 (2015). https://doi.org/10.1007/s11517-015-1342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1342-3

Keywords

Navigation