Skip to main content

Advertisement

Log in

Effects of reconstructed magnetic field from sparse noisy boundary measurements on localization of active neural source

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Localization of active neural source (ANS) from measurements on head surface is vital in magnetoencephalography. As neuron-generated magnetic fields are extremely weak, significant uncertainties caused by stochastic measurement interference complicate its localization. This paper presents a novel computational method based on reconstructed magnetic field from sparse noisy measurements for enhanced ANS localization by suppressing effects of unrelated noise. In this approach, the magnetic flux density (MFD) in the nearby current-free space outside the head is reconstructed from measurements through formulating the infinite series solution of the Laplace’s equation, where boundary condition (BC) integrals over the entire measurements provide “smooth” reconstructed MFD with the decrease in unrelated noise. Using a gradient-based method, reconstructed MFDs with good fidelity are selected for enhanced ANS localization. The reconstruction model, spatial interpolation of BC, parametric equivalent current dipole-based inverse estimation algorithm using reconstruction, and gradient-based selection are detailed and validated. The influences of various source depths and measurement signal-to-noise ratio levels on the estimated ANS location are analyzed numerically and compared with a traditional method (where measurements are directly used), and it was demonstrated that gradient-selected high-fidelity reconstructed data can effectively improve the accuracy of ANS localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahonen AI, Hämäläinen MS, Ilmoniemi RJ, Kajola MJ, Knuutila JET, Simola JT, Vilkman VA (1993) Sampling theory for neuromagnetic detector arrays. IEEE Trans Biomed Eng 40:859–869

    Article  CAS  PubMed  Google Scholar 

  2. Ammari H, Vogelius MS, Volkov D (2001) Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. II. The full Maxwell equations. J Math Pures Appl 80(8):769–814

    Article  Google Scholar 

  3. Ammari H, Bao G, Fleming JL (2002) An inverse source problem for Maxwell’s equations in magnetoencephalography. SIAM J Appl Math 62(4):1369–1382

    Article  Google Scholar 

  4. Ammari H, Moskow S, Vogelius MS (2003) Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM Control Optim Calc Var 9:49–66

    Article  Google Scholar 

  5. Auranen T, Nummenmaa A, Vanni S, Vehtari A, Hämäläinen MS, Lampinen J, Jääskeläinen IP (2009) Automatic fMRI-guided MEG multidipole localization for visual responses. Hum Brain Mapp 30:1087–1099

    Article  PubMed  Google Scholar 

  6. Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F (2004) Multimodal integration of EEG and MEG data: a simulation study with variable signal-to-noise ratio and number of sensors. Hum Brain Mapp 22:52–62

    Article  PubMed  Google Scholar 

  7. deMunck JC, Huizenga HM, Waldorp LJ, Heethaar RA (2002) Estimating stationary dipoles from MEG/EEG data contaminated with spatially and temporally correlated background noise. IEEE Trans Signal Process 50(7):1565–1572

    Article  Google Scholar 

  8. Fukushima M, Yamashita O, Kanemura A, Ishii S, Kawato M, Sato M (2012) A state-space modeling approach for localization of focal current sources from MEG. IEEE Trans Biomed Eng 59(6):1561–1571

    Article  PubMed  Google Scholar 

  9. Golubic SJ, Susac A, Grilj V, Ranken D, Huonker R, Haueisen J, Supek S (2011) Size matters: MEG empirical and simulation study on source localization of the earliest visual activity in the occipital cortex. Med Biol Eng Comput 49:545–554

    Article  PubMed  Google Scholar 

  10. Gonzalez-Moreno A, Aurtenetxe S, Lopez-Gracia M-E, del Pozo F, Maestu F, Nevado A (2014) Signal-to-noise ratio of the MEG signal after preprocessing. J Neurosci Methods 222:56–61

    Article  PubMed  Google Scholar 

  11. Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography: theory, instrumentation and applications to non-invasive studies of the working human brain. Rev Mod Phys 65(2):413–498

    Article  Google Scholar 

  12. Hansen PC, Kringelbach ML, Salmelin RH (2010) MEG: an introduction to methods. Oxford University, New York

    Book  Google Scholar 

  13. Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kubler A (2007) An MEG-based brain-computer interface (BCI). Neuroimage 36(3):581–593

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nurminen J, Taulu S, Nenonen J, Helle L, Simola J, Ahonen A (2013) Improving MEG performance with additional tangential sensors. IEEE Trans Biomed Eng 60(9):2559–2566

    Article  PubMed  Google Scholar 

  15. Oishi M, Kameyama S, Masuda H, Tohyama J, Kanazawa O, Sasagawa M, Otsubo H (2006) Single and multiple clusters of magnetoencephalographic dipoles in neocortical epilepsy: significance in characterizing the epileptogenic zone. Epilepsia 47(2):355–364

    Article  PubMed  Google Scholar 

  16. Ramírez RR, Kopell BH, Butson CR, Hiner BC, Baillet S (2011) Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging. Neuroimage 56:78–92

    Article  PubMed  Google Scholar 

  17. Song T, Gaa K, Cui L, Feffer L, Lee RR, Huang MX (2008) Evaluation of signal space separation via simulation. Med Biol Eng Comput 46:923–932

    Article  PubMed  Google Scholar 

  18. Tanaka N, Stufflebeam SM (2014) Clinical application of spatiotemporal distributed source analysis in presurgical evaluation of epilepsy. Front. Hum, Neurosci 8

    Google Scholar 

  19. Taulu S, Simola J (2006) Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol 51:1759–1768

    Article  CAS  PubMed  Google Scholar 

  20. Uusitalo MA, Ilmoniemi RJ (1997) Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35:135–140

    Article  CAS  PubMed  Google Scholar 

  21. von Helmholtz H (1853) Ueber einige Gesetze der Vertheilung elektrischer Strome in Korperlichen Leitem, mit Anwendung auf die thierisch-elektrisehen Versuche. Ann Phys Chem 89(211–233):353–377

    Article  Google Scholar 

  22. Sloane NJA, with the collaboration of RH Hardin, WD Smith and others, Tables of Spherical Codes. http://neilSloane.com/packings/

  23. Yutaka U, Kaoru A, Tsunehiro T (2013) Development of a generative model of magnetoencephalography noise that enables brain signal extraction from single-epoch data. Med Biol Eng Comput 51(8):937–951

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 51105329), US National Science Foundation EFRI-M3C 1137172, National Basic Research Program (973) of China (Nos. 2013CB035803 and 2011CB013300), and SUTD-ZJU Research Collaboration Grant ZJURP1200102.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kok-Meng Lee or Liang Hu.

Appendices

Appendix 1: Solutions to magnetic scalar potential in Ω outside the head

Solved by the separation-of-variable method in spherical coordinates, the solutions to Eq. (6c) with BCs (7a–d) are a linear combination of the spherical harmonic functions which are products of trigonometric functions and associated Legendre polynomials \(P_{l}^{m} \left( {\cos \theta } \right)\) of degree l and order m:

$$\psi \left( {r,\theta ,\varphi } \right) = \sum\limits_{l = 0}^{\infty } {\sum\limits_{m = 0}^{l} {\left[ {r^{l} (a_{l}^{m} { \cos }m\varphi + b_{l}^{m} { \sin }m\varphi )P_{l}^{m} (\cos \theta ) + r^{ - (l + 1)} (c_{l}^{m} { \cos }m\varphi + d_{l}^{m} { \sin }m\varphi )P_{l}^{m} (\cos \theta )} \right]} }$$
(16)

Noting that \(\psi \left| {_{r \to \infty } } \right. = 0\), \(a_{l}^{m} = b_{l}^{m} = 0\), and \(c_{l}^{m} = d_{l}^{m}\) are determined from the BCs:

$$\, \left[ {\begin{array}{*{20}c} {c_{l}^{m} } \\ {d_{l}^{m} } \\ \end{array} } \right] = \frac{{r_{s}^{{\left( {l + 2} \right)}} }}{{\mu_{0} \left( {l + 1} \right)}}\left( {N_{l}^{m} } \right)^{ - 2} \left[ {\begin{array}{*{20}c} {C_{l}^{m} } \\ {D_{l}^{m} } \\ \end{array} } \right]$$
(17)

where the modulus of spherical harmonics

$$\left( {N_{l}^{m} } \right)^{ - 2} = \left( {\frac{2l + 1}{{2\pi \delta_{m} }}} \right)\frac{(l - m)!}{(l + m)!}\quad {\text{with}}\;\delta_{m} = \left\{ {\begin{array}{*{20}l} {2, \, m = 0} \hfill \\ {1, \, m \ne 0} \hfill \\ \end{array} } \right.$$
(18)

and

$$\left[ {\begin{array}{*{20}c} {C_{l}^{m} } \\ {D_{l}^{m} } \\ \end{array} } \right] = \int_{0}^{2\pi } {\int_{0}^{\pi } {B_{s} \left( {\theta ,\varphi } \right)\left[ {\begin{array}{*{20}c} {\cos m\varphi } \\ {\delta_{m} \sin m\varphi } \\ \end{array} } \right]P_{l}^{m} \left( {\cos \theta } \right)\sin \theta d\theta d\varphi } }$$
(19)

Appendix 2: H-nearest neighborhood interpolation of measured data on BC surface

The second-order fitting polynomial function in Eq. (20) is used to interpolate among the sparse measured data on a three-dimensional surface:

$$B_{b} \left( {\theta ,\varphi } \right) \approx g_{0} + r_{s} {\mathbf{g}}^{T} {\mathbf{x}} + r_{s}^{2} {\mathbf{x}}^{T} {\mathbf{Gx}}$$
(20)
$${\text{where}}\quad {\mathbf{x}} = \left[ {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\sin \theta \cos \varphi } \\ {\sin \theta \sin \varphi } \\ {\cos \theta } \\ \end{array} } \right];\quad {\mathbf{g}} = \left[ {\begin{array}{*{20}c} {g_{1} } \\ {g_{2} } \\ {g_{3} } \\ \end{array} } \right]\quad {\text{and}}\;{\mathbf{G}} = \left[ {\begin{array}{*{20}c} {g_{7} } & {g_{4} } & {g_{5} } \\ 0 & {g_{8} } & {g_{6} } \\ 0 & 0 & {g_{9} } \\ \end{array} } \right].$$

The coefficients (g 0, g, G) in Eq. (20) are determined by LS technique weighted over the H-nearest neighbor measurements, which minimizes the objective function (21) where w i is determined by the distance δ i between the ith nearest neighbor measurement B si and the point being interpolated:

$${\text{Minimize}}\; \, f_{b} \left( {g_{0} ,{\mathbf{g}},{\mathbf{G}}} \right) = \sum\limits_{i = 1}^{H} {w_{i} \left\| {B_{bi} \left( {\theta_{i} ,\varphi_{i} } \right) - B_{si} } \right\|^{2} }$$
(21)
$${\text{where }}w_{i} = 1 - 3t_{i}^{2} + 2t_{i}^{3} {\text{ and }}t_{i} = \frac{{\delta_{i} }}{{{\text{Max}}\left\{ {\delta_{1} ,\delta_{2} , \ldots ,\delta_{H} } \right\}}}$$
(22,23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Hm., Lee, KM., Hu, L. et al. Effects of reconstructed magnetic field from sparse noisy boundary measurements on localization of active neural source. Med Biol Eng Comput 54, 177–189 (2016). https://doi.org/10.1007/s11517-015-1381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1381-9

Keywords

Navigation