Skip to main content
Log in

Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Brain–computer interfaces (BCIs) are widely used for clinical applications and exploited to design robotic and interactive systems for healthy people. We provide evidence to control a sensorimotor electroencephalographic (EEG) BCI system while piloting a flight simulator and attending a double attentional task simultaneously. Ten healthy subjects were trained to learn how to manage a flight simulator, use the BCI system, and answer to the attentional tasks independently. Afterward, the EEG activity was collected during a first flight where subjects were required to concurrently use the BCI, and a second flight where they were required to simultaneously use the BCI and answer to the attentional tasks. Results showed that the concurrent use of the BCI system during the flight simulation does not affect the flight performances. However, BCI performances decrease from the 83 to 63 % while attending additional alertness and vigilance tasks. This work shows that it is possible to successfully control a BCI system during the execution of multiple tasks such as piloting a flight simulator with an extra cognitive load induced by attentional tasks. Such framework aims to foster the knowledge on BCI systems embedded into vehicles and robotic devices to allow the simultaneous execution of secondary tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allison BZ, Brunner C, Kaiser V, Muller-Putz GR, Neuper C, Pfurtscheller G (2010) Toward a hybrid brain–computer interface based on imagined movement and visual attention. J Neural Eng 7:26007. doi:10.1088/1741-2560/7/2/026007

    Article  CAS  PubMed  Google Scholar 

  2. Astolfi L, Vecchiato G, De Vico Fallani F, Salinari S, Cincotti F, Aloise F, Mattia D, Marciani MG, Bianchi L, Soranzo R, Babiloni F (2009) The track of brain activity during the observation of TV commercials with the high-resolution EEG technology. Comput Intell Neurosci. doi:10.1155/2009/652078

    Google Scholar 

  3. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  CAS  PubMed  Google Scholar 

  4. Berka C, Levendowski DJ, Lumicao MN, Yau A, Davis G, Zivkovic VT, Olmstead RE, Tremoulet PD, Craven PL (2007) EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med 78:B231–B244

    PubMed  Google Scholar 

  5. Cao L, Li J, Ji H, Jiang C (2014) A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control. J Neurosci Methods 229:33–43. doi:10.1016/j.jneumeth.2014.03.011

    Article  PubMed  Google Scholar 

  6. Carron L (1991) Morse code: the essential language. Hartford, American Radio Relay League

    Google Scholar 

  7. Chi YM, Wang YT, Wang Y, Maier C, Jung TP, Cauwenberghs G (2012) Dry and noncontact EEG sensors for mobile brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20:228–235. doi:10.1109/TNSRE.2011.2174652

    Article  PubMed  Google Scholar 

  8. Cincotti F, Mattia D, Babiloni C, Carducci F, Salinari S, Bianchi L, Marciani MG, Babiloni F (2003) The use of EEG modifications due to motor imagery for brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng 11:131–133. doi:10.1109/TNSRE.2003.814455

    Article  PubMed  Google Scholar 

  9. Cincotti F, Pichiorri F, Arico P, Aloise F, Leotta F, de Vico Fallani F, Millan Jdel R, Molinari M, Mattia D (2012) EEG-based brain–computer interface to support post-stroke motor rehabilitation of the upper limb. Conf Proc IEEE Eng Med Biol Soc 2012:4112–4115. doi:10.1109/EMBC.2012.6346871

    CAS  PubMed  Google Scholar 

  10. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21. doi:10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  11. Diez PF, Correa AG, Orosco L, Laciar E, Mut V (2015) Attention-level transitory response: a novel hybrid BCI approach. J Neural Eng 12:056007. doi:10.1088/1741-2560/12/5/056007

    Article  PubMed  Google Scholar 

  12. Do AH, Wang PT, King CE, Chun SN, Nenadic Z (2013) Brain–computer interface controlled robotic gait orthosis. J Neuroeng Rehabil 10:111. doi:10.1186/1743-0003-10-111

    Article  PubMed  PubMed Central  Google Scholar 

  13. Foldes ST, Taylor DM (2013) Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm. J Neuroeng Rehabil 10:116. doi:10.1186/1743-0003-10-116

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huggins JE, Wolpaw JR (2014) Papers from the fifth international brain–computer interface meeting. Preface. J Neural Eng 11:030301. doi:10.1088/1741-2560/11/3/030301

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kasper RW, Cecotti H, Touryan J, Eckstein MP, Giesbrecht B (2014) Isolating the neural mechanisms of interference during continuous multisensory dual-task performance. J Cogn Neurosci 26:476–489. doi:10.1162/jocn_a_00480

    Article  PubMed  Google Scholar 

  16. King CE, Wang PT, Chui LA, Do AH, Nenadic Z (2013) Operation of a brain–computer interface walking simulator for individuals with spinal cord injury. J Neuroeng Rehabil 10:77. doi:10.1186/1743-0003-10-77

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195

    Article  CAS  PubMed  Google Scholar 

  18. Koo B, Lee HG, Nam Y, Kang H, Koh CS, Shin HC, Choi S (2014) A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery. J Neurosci Methods. doi:10.1016/j.jneumeth.2014.04.016

    PubMed  Google Scholar 

  19. Kranczioch C, Zich C, Schierholz I, Sterr A (2014) Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation. Int J Psychophysiol 91:10–15. doi:10.1016/j.ijpsycho.2013.10.004

    Article  PubMed  Google Scholar 

  20. Leclercq MZP (2004) Applied neuropsychology of attention: theory, diagnosis and rehabilitation. Psychology Press, New York

    Google Scholar 

  21. Leeb R, Perdikis S, Tonin L, Biasiucci A, Tavella M, Creatura M, Molina A, Al-Khodairy A, Carlson T, Millan JD (2013) Transferring brain–computer interfaces beyond the laboratory: successful application control for motor-disabled users. Artif Intell Med 59:121–132. doi:10.1016/j.artmed.2013.08.004

    Article  PubMed  Google Scholar 

  22. Looned R, Webb J, Xiao ZG, Menon C (2014) Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. J Neuroeng Rehabil 11:51. doi:10.1186/1743-0003-11-51

    Article  PubMed  PubMed Central  Google Scholar 

  23. Millan JD, Rupp R, Muller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M, Vidaurre C, Cincotti F, Kubler A, Leeb R, Neuper C, Muller KR, Mattia D (2010) Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci. doi:10.3389/fnins.2010.00161

    PubMed  PubMed Central  Google Scholar 

  24. Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89. doi:10.1146/annurev-neuro-062111-150525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, Scherer R, Zander TO, Mueller-Putz G, Neuper C, Birbaumer N (2010) The hybrid BCI. Front Neurosci 4:30. doi:10.3389/fnpro.2010.00003

    PubMed  Google Scholar 

  26. Riccio A, Mattia D, Simione L, Olivetti M, Cincotti F (2012) Eye-gaze independent EEG-based brain–computer interfaces for communication. J Neural Eng 9:045001. doi:10.1088/1741-2560/9/4/045001

    Article  CAS  PubMed  Google Scholar 

  27. Riccio A, Simione L, Schettini F, Pizzimenti A, Inghilleri M, Belardinelli MO, Mattia D, Cincotti F (2013) Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Front Hum Neurosci 7:732. doi:10.3389/fnhum.2013.00732

    Article  PubMed  PubMed Central  Google Scholar 

  28. Riccio A, Holz EM, Arico P, Leotta F, Aloise F, Desideri L, Rimondini M, Kubler A, Mattia D, Cincotti F (2015) Hybrid P300-based brain–computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task. Arch Phys Med Rehabil 96:S54–S61. doi:10.1016/j.apmr.2014.05.029

    Article  PubMed  Google Scholar 

  29. Royer AS, Doud AJ, Rose ML, He B (2010) EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Trans Neural Syst Rehabil Eng 18:581–589. doi:10.1109/TNSRE.2010.2077654

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain–computer interface (BCI) system. IEEE Trans Biomed Eng 51:1034–1043. doi:10.1109/TBME.2004.827072

    Article  PubMed  Google Scholar 

  31. Smucny J, Rojas DC, Eichman LC, Tregellas JR (2013) Neuronal effects of auditory distraction on visual attention. Brain Cogn 81:263–270. doi:10.1016/j.bandc.2012.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sturm WWK, Orgass B, Hartje W (1997) Do specific attention deficits need specific training? Neuropsychol Rehabil. doi:10.1080/713755526

    Google Scholar 

  33. Thakor NV (2013) Translating the brain–machine interface. Sci Transl Med 5:210ps217. doi:10.1126/scitranslmed.3007303

    Article  Google Scholar 

  34. Usakli AB, Gurkan S, Aloise F, Vecchiato G, Babiloni F (2009) A hybrid platform based on EOG and EEG signals to restore communication for patients afflicted with progressive motor neuron diseases. Conf Proc IEEE Eng Med Biol Soc 2009:543–546. doi:10.1109/IEMBS.2009.5333742

    CAS  PubMed  Google Scholar 

  35. van Albada SJ, Robinson PA (2007) Transformation of arbitrary distributions to the normal distribution with application to EEG test–retest reliability. J Neurosci Methods 161:205–211. doi:10.1016/j.jneumeth.2006.11.004

    Article  PubMed  Google Scholar 

  36. Vecchiato G, Astolfi L, De Vico Fallani F, Cincotti F, Mattia D, Salinari S, Soranzo R, Babiloni F (2010) Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements. Brain Topogr 23:165–179. doi:10.1007/s10548-009-0127-0

    Article  PubMed  Google Scholar 

  37. Vecchiato G, De Vico Fallani F, Astolfi L, Toppi J, Cincotti F, Mattia D, Salinari S, Babiloni F (2010) The issue of multiple univariate comparisons in the context of neuroelectric brain mapping: an application in a neuromarketing experiment. J Neurosci Methods 191:283–289. doi:10.1016/j.jneumeth.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  38. Yu T, Li Y, Long J, Li F (2013) A hybrid brain–computer interface-based mail client. Comput Math Methods Med 2013:750934. doi:10.1155/2013/750934

    PubMed  PubMed Central  Google Scholar 

  39. Yu T, Li Y, Long J, Wang C (2013) A brain–computer interface controlled mail client. Conf Proc IEEE Eng Med Biol Soc 2013:2164–2167. doi:10.1109/EMBC.2013.6609963

    PubMed  Google Scholar 

  40. Zimmermann P, Fimm B (2012) Tap testbatterie zur aufmerksamkeitsprüfung, 2.3rd edn. Psytest, Herzogenrath

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Grant PRIN2012 related to the mental workload estimation funded by the Ministero dell’Istruzione dell’Università e della ricerca to FB, co-financed by EUROCONTROL on behalf of the SESAR Joint Undertaking in the context of SESAR Work Package E—NINA research project and by the Italian Minister of Foreign Affairs with a bilateral project between Italy and China “Neuropredictor.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Vecchiato.

Additional information

Giovanni Vecchiato and Gianluca Borghini have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchiato, G., Borghini, G., Aricò, P. et al. Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks. Med Biol Eng Comput 54, 1503–1513 (2016). https://doi.org/10.1007/s11517-015-1420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1420-6

Keywords

Navigation